• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
何春保, 王林彬, 李高扬. 基于Mindlin解的矩形均布荷载作用下的附加应力[J]. 岩土工程学报, 2018, 40(3): 533-539. DOI: 10.11779/CJGE201803018
引用本文: 何春保, 王林彬, 李高扬. 基于Mindlin解的矩形均布荷载作用下的附加应力[J]. 岩土工程学报, 2018, 40(3): 533-539. DOI: 10.11779/CJGE201803018
HE Chun-bao, WANG Lin-bin, LI Gao-yang. Stresses induced by vertical rectangular uniform loads within ground based on Mindlin solution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 533-539. DOI: 10.11779/CJGE201803018
Citation: HE Chun-bao, WANG Lin-bin, LI Gao-yang. Stresses induced by vertical rectangular uniform loads within ground based on Mindlin solution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 533-539. DOI: 10.11779/CJGE201803018

基于Mindlin解的矩形均布荷载作用下的附加应力

Stresses induced by vertical rectangular uniform loads within ground based on Mindlin solution

  • 摘要: 基础沉降计算一般首先采用Boussinesq解或考虑埋深的Mindlin解来计算附加应力系数,再考虑分层土特性和地区经验系数,现有的文献在计算半无限弹性体内作用竖向矩形均布荷载的附加应力系数时,为了简化积分,往往将坐标轴置于矩形的角点,计算矩形角点下某点的系数,因此相关解答具有一定的局限性。为了使得解答更具一般性,在集中荷载作用的Mindlin解基础上,通过积分重新推导了在半无限体内部竖向矩形均布荷载作用于水平面内的应力解以及作用在竖向面内时的解表达式,通过与既有文献对比验证了其正确性,并对不同位置和不同泊松比情况下的附加应力系数变化规律进行了分析,相关结论可以为工程计算应用参考。

     

    Abstract: The calculation of foundation settlement is usually based on the Boussinesq’s solution or Mindlin’s solution, which is suitable for considering the embedding depth to calculate the additional stress coefficient. In order to simplify the integration process, in the existing literatures the coordinate origin is often placed at the corner of rectangle in calculating the additional stress coefficient of vertical rectangular uniform loads acting on a semi-infinite elastic body, and the coefficients at a point under the corner of rectangule are calculated, so the relevant solutions have obvious limitations. In order to make the solution more general, on the basis of Mindlin’s solution of concentrated load, the analytic expressions for stress distribution at any point in a semi-infinite body suffering vertical rectanglar uniform loads on horizontal area and the analytic expression for with vertical rectanglar uniform loads on vertical area are deduced. Their correctness is verified by comparing with the existing literature, and the change laws of stress coefficient at different positions under different Poisson's ratios are analysed. The conclusions can be applied in engineering calculation.

     

/

返回文章
返回