• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

Coulomb模型下考虑墙体侧向位移的土压力计算

谢涛, 罗强, 张良, 蒋良潍, 连继峰

谢涛, 罗强, 张良, 蒋良潍, 连继峰. Coulomb模型下考虑墙体侧向位移的土压力计算[J]. 岩土工程学报, 2018, 40(1): 194-200. DOI: 10.11779/CJGE201801021
引用本文: 谢涛, 罗强, 张良, 蒋良潍, 连继峰. Coulomb模型下考虑墙体侧向位移的土压力计算[J]. 岩土工程学报, 2018, 40(1): 194-200. DOI: 10.11779/CJGE201801021
XIE Tao, LUO Qiang, ZHANG Liang, JIANG Liang-wei, LIAN Ji-feng. Relationship between earth pressure and wall displacement based on Coulomb earth pressure model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 194-200. DOI: 10.11779/CJGE201801021
Citation: XIE Tao, LUO Qiang, ZHANG Liang, JIANG Liang-wei, LIAN Ji-feng. Relationship between earth pressure and wall displacement based on Coulomb earth pressure model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 194-200. DOI: 10.11779/CJGE201801021

Coulomb模型下考虑墙体侧向位移的土压力计算  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目
详细信息
    作者简介:

    谢涛(1991-),男,博士研究生,主要从事土力学及路基工程方面的研究。E-mail:1535009557@qq.com。

  • 中图分类号: TU432

Relationship between earth pressure and wall displacement based on Coulomb earth pressure model

  • 摘要: 墙体侧向位移对土压力有显著影响。基于墙体位移-土压力关系是墙后土体应力应变特征的宏观体现这一基本认识,通过构建Coulomb土压力模型下的几何与平衡方程,将直剪试验中微观的土体单位长度剪切位移ε同剪应力τ关系转化成宏观上的墙体位移与土压力曲线,推导了极限位移可求、涵盖主动至被动状态全过程的墙体位移-土压力计算模型。分析表明:滑移区范围、初始应力状态及土体的ε-τ关系是影响墙体位移-土压力曲线的核心要素;相对于主动区,被动区范围对墙土摩擦作用更加敏感,导致静止与被动状态之间的位移-土压力关系受墙土摩擦影响更加显著;墙后土体初始应力状态对墙体位移的影响主要体现为静止土压力系数K0,随着K0的增大主动与被动状态下的墙体位移相应增加和减小;极限状态下墙体位移与工程经验吻合,理论模型能基本反映土压力随位移的变化规律。
    Abstract: The magnitude of earth pressure is greatly influenced by wall displacement. Based on the viewpoint that the relationship between wall displacement and lateral earth pressure is the macroscopic embodiment of soil stress-strain behavior, the relationship between soil shear displacement and shear stress is transformed into the wall displacement-earth pressure curve by using the geometric and equilibrium equation. The analysis indicates that the wall displacement-lateral earth pressure curve is primarily governed by the active or passive zones, initial stress state of retaining soil mass and soil stress-strain behavior. The passive zone is more easily changed with the interface friction angle compared with the active one, making that the wall displacement-lateral curve from the initial state to the passive state is affected by the interface friction angle more significantly. The influence of initial earth pressure state lies in the lateral pressure coefficient K0 at rest, and the required wall displacement reaching the active state tends to grow with the increase of K0, while the required displacement reaching the passive state tends to decline. Reasonable agreement between the results of model tests and the predicted values using the proposed method shows that the solution can provide accurate relationship between lateral earth pressures and wall displacement.
  • [1] TERZAGHI K.Theoretical soil mechanics[M]. New York: John Wiley and Sons, Inc, 1943.
    [2] DUNCAN J M, MOKWA R L.Passive earth pressures: theories and tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(3): 248-257.
    [3] 卢坤林, 杨扬. 非极限主动土压力计算方法初探[J]. 岩土力学, 2010, 31(2): 615-619.
    (LU Kun-lin, YANG Yang.Preliminary study of active earth pressure under nonlimit state[J]. Rock and Soil Mechanics, 2010, 31(2): 615-619. (in Chinese))
    [4] 陈奕柏, 柯才桐, 高洪波, 等. 考虑变位影响的刚性挡墙非极限土压力研究[J]. 岩石力学与工程学报, 2015, 34(5): 1060-1070.
    (CHEN Yi-bai, KE Cai-tong, GAO Hong-bo, et al.Non-limit state earth pressure against retaining wall considering influence of deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 1060-1070. (in Chinese))
    [5] 徐日庆, 廖斌, 吴渐, 等. 黏性土的非极限主动土压力计算方法研究[J]. 岩土力学, 2013, 34(1): 148-154.
    (XU Ri-qing, LIAO Bin, WU Jian, et al.Computational method for active earth pressure of cohesive soil under nonlimit state[J]. Rock and Soil Mechanics, 2013, 34(1): 148-154. (in Chinese))
    [6] MEI G, CHEN Q, SONG L.Model for predicting displacement-dependent lateral earth pressure[J]. Canadian Geotechnical Journal, 2009, 46(8): 969-975.
    [7] Massachusetts Highway Department.Massachusetts Bridge Manual[S]. Boston: Massachusetts Highway Department, 1999.
    [8] ENGLAND G L, BUSH D I, TSANG N C M. Integral bridges: a fundamental approach to the time-temperature loading problem[M]. Thomas Telford, 2000.
    [9] British Code BA42/96. The design of integral bridge[S]. London: British Highway Agency, 1996.
    [10] COLE R T, ROLLINS K M.Passive earth pressure mobilization during cyclic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(9): 1154-1164.
    [11] SHAMSABADI A, ROLLINS K M, KAPUSKAR M.Nonlinear soil-abutment-bridge structure interaction for seismic performance-based design[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 707-720.
    [12] POTTS D M, FOURIE A B.A numerical study of the effects of wall deformation on earth pressures[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10(4): 383-405.
    [13] EN1997-1 Eurocode7: geotechnicaldesign-part 1: general rules[S]. 2005.
    [14] Canadian Geotechnical Society.Canadian foundation engineering manual[M]. Canadian Geotechnical Society, 1978.
    [15] 陈页开. 挡土墙上土压力的试验研究与数值分析[D]. 杭州: 浙江大学, 2001.
    (CHEN Ye-kai.Model test and numerical analysis of earth pressures on retaining wall[D]. Hangzhou: Zhejiang University, 2001. (in Chinese))
    [16] 岳祖润, 彭胤宗, 张师德. 压实黏性填土挡土墙土压力离心模型试验[J]. 岩土工程学报, 1992, 14(6): 90-96.
    (YUE Zu-run, PENG Yin-zong, ZHANG Shi-de.Centrifuge model test on lateral pressure on walls retaining compacted clayey backfill[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(6): 90-96. (in Chinese))
    [17] 陈国芳, 挡土墙与填土间相互作用的研究[D]. 成都: 西南交通大学, 1989.
    (CHEN Guo-fang, Study on interaction between retaining wall and backfill[D]. Chengdu: Southwest Jiaotong University, 1989. (in Chinese))
  • 期刊类型引用(9)

    1. 胡长明,汪芳芳,朱武卫,袁一力,杨晓,柳明亮. 考虑参数随机性的压实黄土蠕变变形不确定性分析. 计算力学学报. 2024(02): 226-232 . 百度学术
    2. 王伟,王晓川,张振华,冯淦. 库水位初次升降对卧沙溪滑坡粉质黏土蠕变特性的影响及其变形规律研究. 灾害学. 2023(02): 197-205 . 百度学术
    3. 戚志宇,李志清. 黄土蠕变特性研究进展. 地球科学与环境学报. 2023(03): 485-510 . 百度学术
    4. 许旭兵,张帆,侯佼建,张敏,杨浩明,董成会. 黄河宁蒙河段黄土蠕变特性与分数阶本构模型研究. 华北水利水电大学学报(自然科学版). 2023(03): 61-68 . 百度学术
    5. 杨志斌. 基于蠕变试验下高边坡稳定性模拟研究. 西安科技大学学报. 2023(05): 988-999 . 百度学术
    6. 常留成,王红雨,王亚,曹静. 含砂量对砂-细粒混合土一维蠕变行为的影响. 岩土力学. 2023(12): 3370-3382+3511 . 百度学术
    7. 胡伦俊,原战辉,张继平,魏浩,汪亮,朱俊锜. 软土固结沉降规律及其蠕变特性试验研究. 四川建筑. 2022(S1): 72-76+79 . 百度学术
    8. 常波,谭维佳. 黄土滑坡滑带土剪切蠕变特性试验研究. 地质与勘探. 2022(06): 1252-1260 . 百度学术
    9. 王凯,胡再强,折海成,梁志超,冯哲,焦韩伟. 人工制备遗址土蠕变试验研究. 水力发电学报. 2020(04): 101-109 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  378
  • HTML全文浏览量:  4
  • PDF下载量:  362
  • 被引次数: 20
出版历程
  • 收稿日期:  2016-10-18
  • 发布日期:  2018-01-24

目录

    /

    返回文章
    返回