• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

冲击碾压荷载下砂土位移特征试验研究

陈忠清, 吕越, 徐超

陈忠清, 吕越, 徐超. 冲击碾压荷载下砂土位移特征试验研究[J]. 岩土工程学报, 2017, 39(s1): 241-245. DOI: 10.11779/CJGE2017S1048
引用本文: 陈忠清, 吕越, 徐超. 冲击碾压荷载下砂土位移特征试验研究[J]. 岩土工程学报, 2017, 39(s1): 241-245. DOI: 10.11779/CJGE2017S1048
CHEN Zhong-qing, LÜ Yue, XU Chao. Experimental tests on displacement characteristics of sand subjected to impact roller compaction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 241-245. DOI: 10.11779/CJGE2017S1048
Citation: CHEN Zhong-qing, LÜ Yue, XU Chao. Experimental tests on displacement characteristics of sand subjected to impact roller compaction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 241-245. DOI: 10.11779/CJGE2017S1048

冲击碾压荷载下砂土位移特征试验研究  English Version

基金项目: 绍兴文理学院科研启动项目(20155010); 绍兴市公益技术; 应用研究计划项目(2015B70034); 浙江省公益技术应用研究计划项; 目(2016C33052)
详细信息
    作者简介:

    陈忠清(1984-),男,浙江永康人,博士,讲师,主要从事地基处理等方面的教学和科研工作。E-mail:Q_CHEN_YK@163.com。

Experimental tests on displacement characteristics of sand subjected to impact roller compaction

  • 摘要: 冲击碾压技术是一种高效、经济的新型动态压实技术,已广泛应用于公路、机场等工程的路基压实、软基处理等领域。采用自行研制的冲击碾压模拟设备进行了模拟试验,主要研究了冲击碾压荷载下砂土位移分布总体特征以及冲击区域中心两侧砂土位移分布特征与冲击区域砂土位移随冲击作用时间的变化特征。结果表明:①冲击区域内砂土位移分布呈近似半椭圆形,其砂土位移沿深度方向的分布范围是碾压区域砂土位移分布范围的2.5倍左右;②冲击轮滚动冲击作用产生的砂土位移沿冲击作用中心两侧非对称分布;③随着冲击作用时间增加,砂土竖向位移明显增大,并在冲击区域左侧砂土浅部出现最大位移。
    Abstract: The impact roller (IR) compaction method is an efficient and cost-effective compaction technique, which has been widely used in highway and airport engineering for subgrade compaction and ground improvement of soft foundation. The simulation tests are carried out based on the self-developed impact roller simulation device. The general displacement distribution characteristics of sand as well as the displacement distribution characteristics of sand at both sides of impact center and displacement variation characteristics of sand with impact time are studied. The results show that: (1) The shape of displacement distribution of sand in the impacting area appears to be semi-elliptical, and the displacement distribution range of sand is 2.5 times the distribution range of sand in the rolling area; (2) The displacement distribution of sand subjected to IR compaction is not symmetrical around the impact center; (3) The vertical displacement of sand increases with the increasing impact time, and the maximum displacement of sand appears at the left side of the impacting area.
  • [1] 史保华, 杨晓娟, 王宏伟. 冲击压实机及其技术在土基处理中的应用分析[J]. 筑路机械与施工机械化, 2006, 23(3): 1-5. (SHI Bao-hua, YANG Xiao-juan, WANG Hong-wei. Application of impact compaction machine in soil subgrade treatment[J]. Road Machinery & Construction Mechanization, 2006, 23(3): 1-5. (in Chinese))
    [2] 车胜创. 冲击式压实机的应用、研究与发展前景. 筑路机械与施工机械化, 2006, 23(3): 10-12. (CHE Sheng-chuang. Application, research and development of impact compaction machine[J]. Road Machinery & Construction Mechanization, 2006, 23(3): 10-12. (in Chinese))
    [3] 陈忠清, 徐 超, 吕 越. 冲击碾压技术的发展及最新研究进展[J]. 施工技术, 2015, 44(增刊): 100-104. (CHEN Zhong-qing, XU Chao, LÜ Yue. Development and prospect for impact roller compaction technique[J]. Construction Technology, 2015, 44(S0): 100-104. (in Chinese))
    [4] 周国钧. 岩土工程治理新技术[M]. 北京: 中国建筑工业出版社, 2010. (ZHOU Guo-jun. New technology of geotechnical engineering[M]. Beijing: China Architecture & Building Press, 2010. (in Chinese))
    [5] 卞学良, 南传立, 肖汾阳, 等. 非圆柱形压实轮压实效果有限元分析[J]. 机械工程学报, 2002, 38(10): 158-162. (BIAN Xue-liang, NAN Chuan-li, XIAO Fen-yang, et al. FEM analysis of impaction effect of non-column wheels of compacting roller[J]. Chinese Journal of Mechanical Engineering, 2002, 38(10): 15-162. (in Chinese))
    [6] 王生新, 韩文峰, 谌文武, 等. 冲击压实路基黄土的微观特征研究[J].岩土力学, 2006, 27(6): 939-944. (WANG Sheng-xin, HAN Wen-feng, CHEN Wen-wu, et al. Microstudy on roadbed loess improvement by impact compaction technology[J]. Rock and Soil Mechanics, 2006, 27(6): 939-944. (in Chinese))
    [7] AVALLE D L, SCOTT B T, JAKSA M B. Ground energy and impact of rolling dynamic compaction - results from research test site[C]// Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering-The Academia & Practice of Geotechnical Engineering, Alexandria. 2009: 2228-2231.
    [8] KIM K. Numerical simulation of impact rollers for estimating the influence depth of soil compaction[D]. Texas: Texas A&M University, College Station, 2010.
    [9] JAKSA M B, SCOTT B T, MENTHA N L, et al. Quantifying the zone of influence of the impact roller[C]// International Symposium on Recent Research, Advances and Execution Aspects of Ground Improvement Works. Brussels, 2012.
    [10] KUO Y L, JAKSA M B, SCOTT B T, et al. Assessing the effectiveness of rolling dynamic compaction[C]// Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, 2013.
    [11] 陈忠清, 徐 超, 叶观宝, 等. 冲击碾压模拟试验设备研制[J]. 岩土力学, 2015, 36(1): 279-285. (CHEN Zhong-qing, XU Chao, YE Guan-bao, et al. Development of an impact roller simulation device[J]. Rock and Soil Mechanics, 2015, 36(1): 279-285. (in Chinese))
    [12] 陈忠清, 徐 超, 吕 越. 冲击碾压加固砂土模型试验研究[J]. 岩土力学, 2015b, 36(增刊2): 525-531. (CHEN Zhong-qing, XU Chao, LÜ Yue. Development of an impact roller simulation device. Rock and Soil Mechanics, 2015, 36(S2): 525-531. (in Chinese))
计量
  • 文章访问数:  292
  • HTML全文浏览量:  4
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-01
  • 发布日期:  2017-11-19

目录

    /

    返回文章
    返回