• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

边坡可靠性分析中g-line失效域及Copula优度评价研究

许晓亮, 王乐华, 李建林, 陈将宏, 覃万里, 邓华锋

许晓亮, 王乐华, 李建林, 陈将宏, 覃万里, 邓华锋. 边坡可靠性分析中g-line失效域及Copula优度评价研究[J]. 岩土工程学报, 2017, 39(8): 1398-1407. DOI: 10.11779/CJGE201708006
引用本文: 许晓亮, 王乐华, 李建林, 陈将宏, 覃万里, 邓华锋. 边坡可靠性分析中g-line失效域及Copula优度评价研究[J]. 岩土工程学报, 2017, 39(8): 1398-1407. DOI: 10.11779/CJGE201708006
XU Xiao-liang, WANG Le-hua, LI Jian-lin, CHEN Jiang-hong, QIN Wan-li, DENG Hua-feng. Investigation of failure domain by using g-line and optimum evaluation of Copulas in slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1398-1407. DOI: 10.11779/CJGE201708006
Citation: XU Xiao-liang, WANG Le-hua, LI Jian-lin, CHEN Jiang-hong, QIN Wan-li, DENG Hua-feng. Investigation of failure domain by using g-line and optimum evaluation of Copulas in slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1398-1407. DOI: 10.11779/CJGE201708006

边坡可靠性分析中g-line失效域及Copula优度评价研究  English Version

基金项目: 水利部公益性行业科研专项经费项目(201401029); 国家自然科学基金重点项目(51439003)
详细信息
    作者简介:

    许晓亮(1989- ),男,博士研究生,主要从事岩土工程可靠性方面的研究,E-mail: sichuan106@163.com。

    通讯作者:

    邓华锋,E-mail:dhf8010@ctgu.edu.cn

Investigation of failure domain by using g-line and optimum evaluation of Copulas in slope reliability analysis

  • 摘要: 针对岩土体抗剪强度参数联合分布模型中Copula优度评价问题,借助g-line给出了一种边坡失效域的抗剪强度参数表征方法,并利用积分途径得到了不同Copula及不同安全系数条件下算例边坡的失效概率,以此探讨了不同Copula计算结果的差异性,重点分析了Sn(pc)、AIC、RMSE及Bias指标下各Copula的评价效果,并以上述各指标值为评价对象,分别计算了各Copula的熵权系数,从而给出了一种加权组合的Copula形式。结果表明,二次多项式拟合g-line的效果良好,此时边坡失效域可由抗剪强度参数独立表征;常用的评价指标得出的最优Copula结果不唯一,当不能有效地识别最优Copula时,可采用加权组合的Copula进行可靠性分析,能减小计算误差,有效地消除不同Copula引起的失效概率差异性,也能避免因直接采用某些Copula而引起的对边坡可靠度偏保守或者过高估计的问题。
    Abstract: The identification of optimum evaluation for different Copulas in shear strength parameters of soils (i.e., cohesion c and internal friction angle φ) is a challenge. According to the g-line, an approach to determine the failure domain of soils in terms of shear strength parameters is given. Thus, the failure probability of an instanced slope can be calculated directly by using the integral approach under different Copulas and safety factors, meantime, the differences of the results are discussed. The effects of evaluation of different Copulas are discussed mainly in terms of Sn(pc), AIC, RMSE and Bias. After employing the above-mentioned index values as the evaluation objects, the entropy weights of the selected Copulas are calculated, and then a weighted combined Copula is proposed. The results show that using a quadratic polynomial can fit the g-line well, and the failure domain of slope can be represented by the shear strength parameters respectively. The optimum copula is not accordant when using the common evaluation indices, such as AIC, RMSE, Bias and Sn(pc). When the optimum Copula is not identified accurately, a weighted combined Copula is recommended because it can effectively control the discrepancies and avoid the excessive or conservative estimation of slope reliability.
  • [1] 高大钊. 岩土工程的回顾与前瞻[M]. 北京: 人民交通出版社, 2001. (GAO Da-zhao. A review and prospect of geotechnical engineering[M]. Beijing: China Communications Press, 2001. (in Chinese))
    [2] LI D Q, TANG X S, ZHOU C B, et al. Uncertainty analysis of correlated non-normal geotechnical parameters using Gaussian copula[J]. Sci China Tech Sci, 2012, 55: 3081-3089.
    [3] 姚耀武, 陈东伟. 土坡稳定可靠度分析[J]. 岩土工程学报, 1994, 16(2): 80-87. (YAO Yao-wu, CHEN Dong-wei. Reliability analysis of slope stability[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 80-87. (in Chinese))
    [4] LI D Q, CHEN Y F, LU W B, et al. Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables[J]. Computers and Geotechnics, 2011, 38(1): 58-68.
    [5] SL 386—2007水利水电工程边坡设计规范[S]. 2007. (SL 386—2007 Design code for engineered slopes in water resources and hydropower projects[S]. 2007. (in Chinese))
    [6] WU X Z. Probabilistic slope stability analysis by a copula-based sampling method[J]. Computational Geosciences, 2013, 17(5): 739-755.
    [7] 唐小松, 李典庆, 周创兵, 等. 基于Copula函数的抗剪强度参数间相关性模拟及边坡可靠度分析[J]. 岩土工程学报, 2012, 34(12): 2284-2291. (TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, et al. Modeling dependence between shear strength parameters using Copulas and its effect on slope reliability[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2284-2291. (in Chinese))
    [8] NATAF A. Détermination des distributions de probabilitédont les margessontdonnées[J]. ComptesRendus de l’Académie des Sciences, 1962, 225: 42-43.
    [9] LOW B K. Reliability analysis of rock slopes involving correlated nonnormals[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 922-935.
    [10] NELSEN R B. An introduction to copulas[M]. New York: Springer, 2006.
    [11] CHERUBINI U, LUCIANO E, VECCHIATO W. Copula methods in finance[M]. England: John Wiley & Sons Ltd, 2004.
    [12] ESCARELA G, CARRIERE J F. Fitting competing risks with an assumed Copula[J]. Statistical Methods in Medical Research, 2003, 12(4): 333-349.
    [13] 郭生练, 闫宝伟, 肖 义, 等. Copula函数在多变量水文分析计算中的应用及研究进展[J]. 水文, 2008, 28(3): 1-7. (GUO Sheng-lian, YAN Bao-wei, XIAO Yi, et al. Multivariate hydrological analysis and estimation[J]. Journal of China Hydrology, 2008, 28(3): 1-7. (in Chinese))
    [14] 唐小松, 李典庆, 周创兵, 等. 基于Copula函数的基桩荷载-位移双曲线概率分析[J]. 岩土力学, 2012, 33(1): 171-178. (TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, et al. Probabilistic analysis of load-displacement hyperbolic curves of single pile using Copula[J]. Rock and Soil Mechanics, 2012, 33(1): 171-178. (in Chinese))
    [15] 唐小松, 李典庆, 周创兵, 等. 不完备概率信息条件下边坡可靠度分析方法[J]. 岩土工程学报, 2013, 35(6): 1027-1034. (TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, et al. Reliability analysis of slopes with incomplete probability information[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1027-1034. (in Chinese))
    [16] 唐小松, 李典庆, 周创兵, 等. 联合分布函数构造的Copula函数方法及结构可靠度分析[J]. 工程力学, 2013, 30(12): 8-17, 42. (TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, et al. Modeling bivariate distribution using copulas and its application tocomponent reliability analysis[J]. Engineering Mechanics, 2013, 30(12): 8-17, 42. (in Chinese))
    [17] WU X Z. Using copulas to characterise the dependency of GCL shear strengths[J]. Geosynthetics International, 2013, 20(5): 344-357.
    [18] WU X Z. Trivariate analysis of soil ranking-correlated characteristics and its application to probabilistic stability assessments in geotechnical engineering problems[J]. Soils Found, 2013, 53(4): 540-56.
    [19] 杨 超, 黄 达, 张永兴, 等. 基于Copula理论的岩体抗剪强度参数估值[J]. 岩石力学与工程学报, 2013, 32(12): 2463-2470. (YANG Chao, HUANG Da, ZHANG Yong-xing, et al. Estimation of shear strength parameters of rock mass based on copula theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2463-2470. (in Chinese))
    [20] 杨 超, 黄 达, 张永兴. 基于Copula理论岩体质量Q值及波速与变形模量多变量相关性研究[J]. 岩石力学与工程学报, 2014, 33(3): 80-86. (YANG Chao, HUANG Da, ZHANG Yong-xing. Multivariable correlation of rock mass quality index Q system value,wave velocity and deformation modulus based on copula theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 80-86. (in Chinese))
    [21] MOTAMEDIM, LIANG RY. Probabilistic landslide hazard assessment using Copula modeling technique[J]. Landslides, 2014, 11(4): 565-573.
    [22] MARCHANT B P, SABY N P A, JOLIVET C C, et al. Spatial prediction of soil properties with copulas[J]. Geoderma, 2011, 162(3/4): 327-34.
    [23] 唐小松, 李典庆, 周创兵, 等. 基于 Bootstrap 方法的岩土体参数联合分布模型识别[J]. 岩土力学, 2015, 36(4): 913-922. (TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, et al. Bootstrap method for joint probability distribution identificationof correlated geotechnical parameters[J]. Rock and Soil Mechanics, 2015, 36(4): 913-922. (in Chinese))
    [24] AKAIKE H. A new look at the statistical model identification[J]. IEEE Trans Autom Control, 1974, AC-19(6): 16-722.
    [25] ZHANG L. Multivariate hydrological frequency analysis and risk mapping[D]. Baton Rouge: Louisiana State University, 2005.
    [26] GENEST C, REMILLARD B, BEAUDOIN D. Goodness- of-fit tests for copulas: a review and a power study[J]. Insur Math Econ, 2009, 44: 199-214.
    [27] KOJADINOVIC I, YAN J. Modeling multivariate distributions with continuous margins using the copula R Package[J]. J Stat Soft, 2010, 34(9): 1-20.
    [28] AKLAR, EAHARONOV, BKALDERON-ASAEL, et al. Analytical and observational relations between landslide volume and surface area[J]. Journal of Geophysical Research, 2011, 116(F2): 1-10.
    [29] SKLAR A. Fonctions de répartitionàn dimensions etleursmarges[J]. Publications de l’Institut de Statistiquedel’Université de Paris, 1959, 8: 229-231.
    [30] 于清波. 土石坝坝坡稳定可靠度研究及其工程应用[D]. 南京: 河海大学, 2006.(YU Qing-bo. Researches on the reliability of the stability of the earth-rock fill dam and its application[D]. Nanjing: Hohai University, 2006. (in Chinese))
    [31] 陈立宏, 陈祖煜, 刘金梅. 土体抗剪强度指标的概率分布类型研究[J]. 岩土力学, 2005, 26(1): 37-40. (CHEN Li-hong, CHEN Zu-yu, LIU Jin-mei. Probability distributionof soil strength[J]. Rock and Soil Mechanics, 2005, 26(1): 37-40. (in Chinese))
    [32] HATA Y, ICHII K, TSUCHIDA T, et al. A practical method for identifying parameters in the seismic design of embankments[J]. Georisk: Assess Manag Risk Eng Syst Geohazards, 2008, 2(1): 28-40.
    [33] SONG S B, VIJAY P S. Frequency analysis of droughts using the Plackett copulaand parameter estimation by genetic algorithm[J]. Stoch Environ Res Risk Assess, 2010, 24: 783-805.
    [34] YAN J. Enjoy the joy of copulas: with a package copula[J]. J Stat Soft, 2007, 21(4): 1-21.
    [35] 周礼胜. 基于模糊层次分析法和信息熵的应急物资库存管理研究[D]. 合肥: 中国科学技术大学管理学院, 2010: 34-36. (ZHOU Li-sheng. Study on emergency material inventory management based on FAHP andentropy[D]. Hefei: University of Science and Technology of China, 2010: 34-36. (in Chinese))
    [36] 邹志红, 孙靖南, 任广平. 模糊评价因子的熵权法赋权及其在水质评价中的应用[J]. 环境科学学报, 2005, 25(4): 552-556. (ZOU Zhi-hong, SUN Jing-nan, REN Guang-ping. Study and application on the entropy method for determination of weight of evaluating indicators in Fuzzy Synthetic Evaluation for Water Quality Assessment[J]. Acta Scientiae Circumstantiae, 2005, 25(4): 552-556. (in Chinese))
    [37] 李远耀. 三峡库区渐进式库岸滑坡的预测预报研究[D]. 武汉: 中国地质大学, 2010. (LI Yuan-yao. Research on prediction and forecast of progressive bank landslide in the Three Gorges Reservoir[D]. Wuhan: Hohai University, 2006. (in Chinese))
    [38] ILICH N. A matching algorithm for generation ofstatistically dependent random variables with arbitrary marginals[J]. European Journal of Operational Research, 2009, 192(2): 468-478.
计量
  • 文章访问数:  328
  • HTML全文浏览量:  3
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-17
  • 发布日期:  2017-08-24

目录

    /

    返回文章
    返回