• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

一个基于细观结构的粗粒料弹塑性本构模型

刘斯宏, 邵东琛, 沈超敏, 王子健

刘斯宏, 邵东琛, 沈超敏, 王子健. 一个基于细观结构的粗粒料弹塑性本构模型[J]. 岩土工程学报, 2017, 39(5): 777-783. DOI: 10.11779/CJGE201705001
引用本文: 刘斯宏, 邵东琛, 沈超敏, 王子健. 一个基于细观结构的粗粒料弹塑性本构模型[J]. 岩土工程学报, 2017, 39(5): 777-783. DOI: 10.11779/CJGE201705001
LIU Si-hong, SHAO Dong-chen, SHEN Chao-min, WANG Zi-jian. Microstructure-based elastoplastic constitutive model for coarse-grained materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 777-783. DOI: 10.11779/CJGE201705001
Citation: LIU Si-hong, SHAO Dong-chen, SHEN Chao-min, WANG Zi-jian. Microstructure-based elastoplastic constitutive model for coarse-grained materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 777-783. DOI: 10.11779/CJGE201705001

一个基于细观结构的粗粒料弹塑性本构模型  English Version

基金项目: 国家自然科学基金项目(51179059); 中央高校基本科研业务费项目(2015B25014)
详细信息
    作者简介:

    刘斯宏(1964- ),男,教授,博士生导师,主要从事土石坝工程、粒状体力学及地基处理等方面的研究。E-mail: sihongliu@hhu.edu.cn。

  • 中图分类号: TU431

Microstructure-based elastoplastic constitutive model for coarse-grained materials

  • 摘要: 针对粗粒料的剪胀特性和强度非线性,在经典弹塑性理论框架内,建立了一个基于细观结构的粗粒料弹塑性本构模型。模型采用基于颗粒材料细观结构变化推导得到的屈服函数,在此基础上由非相关联流动法则得到的剪胀方程,结合粗粒料典型的三轴压缩试验结果,引入一种无黏性土的压缩模式,构造了能够统一描述粗粒料剪胀、剪缩特性的硬化参数。阐述了由常规三轴试验和等向压缩试验确定模型全部7个参数的方法。对3种粗粒料三轴压缩试验结果进行了预测,预测结果与试验结果吻合良好,说明模型能够合理地反映粗粒料的应力变形特性。
    Abstract: Considering the nonlinear characteristics of dilatancy and strength of coarse-grained materials, an elastoplastic constitutive model based on microstructures is established within the framework of classic elastoplastic theory. In the model, a yield function derived from the microstructure of granular materials is adopted,and a stress-dilatancy relationship is developed from the yield function with the non-associated flow rule. Based on the typical trixial compression test results of coarse-grained materials, a hardening parameter is proposed by introducing a compression model for cohesionless soils, which can describe both the dilantancy and the contraction of coarse-grained materials. The proposed model has 7 parameters, which can be determined by the conventional trixial compression tests and the isotropic compression tests. The proposed model is calibrated by modeling the trixial compression tests on three rockfill materials. It is found that the calculated values are in good agreement with the experimental data, indicating that the proposed model can reflect the stress and deformation characteristics of coarse-grained materials reasonably.
  • [1] 秦红玉, 刘汉龙, 高玉峰, 等. 粗粒料强度和变形的大型三轴试验研究[J]. 岩土力学, 2004, 25(10): 1575-1580. (QIN Hong-yu, LIU Han-long, GAO Yu-feng, et al. Research on strength and deformation behavior of coarse aggregates based on large-scale triaxial tests[J]. Rock and Soil Mechanics, 2004, 25(10): 1575-1580. (in Chinese)
    [2] 刘汉龙, 秦红玉, 高玉峰, 等. 堆石粗粒料颗粒破碎试验研究[J]. 岩土力学, 2005, 26(4): 562-566. (LIU Han-long, QIN Hong-yu, GAO Yu-feng, et al. Experimental study on particle breakage of rockfill and coarse aggregates[J]. Rock and Soil Mechanics, 2005, 26(4): 562-566. (in Chinese))
    [3] 程展林, 丁红顺, 吴良平. 粗粒土试验研究[J]. 岩土工程学报, 2007, 29(8): 1151-1158. (CHENG Zhan-lin, DING Hong-shun, WU Liang-ping. Experimental study on mechanical behaviour of granular material[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1151-1158. (in Chinese))
    [4] 杨 光, 孙 逊, 于玉贞,等. 不同应力路径下粗粒料力学特性试验研究[J]. 岩土力学, 2010, 31(4): 1118-1122. (YANG Guang, SUN Xun, YU Yu-zhen,et al. Experimental study of mechanical behavior of a coarse-grained material under various stress paths[J]. Rock and Soil Mechanics, 2010, 31(4): 1118-1122. (in Chinese))
    [5] 丁树云, 蔡正银, 凌 华. 堆石料的强度与变形特性及临界状态研究[J]. 岩土工程学报, 2010, 32(2): 248-252. (DING Shu-yun, CAI Zheng-yin, LING Hua. Strength and deformation characteristics and critical state of rock fill[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2): 248-252. (in Chinese))
    [6] 陈生水, 韩华强, 傅 华. 循环荷载作用下堆石料应力变形特性研究[J]. 岩土工程学报, 2010, 32(8): 1151-1157. (CHENG Sheng-shui, HAN Hua-qiang, FU Hua. Stress and deformation behaviors of rockfill under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1151-1157. (in Chinese))
    [7] ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 8(2): 22-53.
    [8] ROSCOE K H,BURLAND J B. On the generalized stress-strainbehaviour of wet clay[M]. Cambridge:Cambridge University Press,1968:535-609.
    [9] 姚仰平, 侯 伟, 罗 汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. (YAO Yang-ping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese))
    [10] 刘萌成, 高玉峰, 黄晓明. 考虑强度非线性的堆石料弹塑性本构模型研究[J]. 岩土工程学报, 2005, 27(3): 294-298. (LIU Meng-cheng, GAO Yu-feng, HUANG Xiao-ming. Study on elasto-plastic constitutive model of rockfills with nonlinear strength characteristics[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 294-298. (in Chinese))
    [11] 孙海忠, 黄茂松. 考虑颗粒破碎的粗粒土临界状态弹塑性本构模型[J]. 岩土工程学报, 2010, 32(8): 1284-1290. (SUN Hai-zhong, HUANG Mao-song. Critical state elasto-plastic model for coarse granular aggregates incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1284-1290. (in Chinese))
    [12] ZIENKIEWICZ O C. Generalized plasticity and some models for geomechanics[J]. Applied Mathematics and Mechanics, 1982, 3(3): 303-318.
    [13] PASTOR M. A generalized plasticity model for anisotropic behavior of sand[J]. Computer Methods and Advances in Geomechanics, 1991, 1: 661-668.
    [14] PASTOR M, ZIENKIEWICZ O C, CHAN A H C. Generalized plasticity and the modelling of soil behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(3): 151-190.
    [15] 陈生水, 傅中志, 韩华强, 等. 一个考虑颗粒破碎的堆石料弹塑性本构模型[J]. 岩土工程学报, 2011, 33(10): 1489-1496. (CHENG Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, et al. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489-1496. (in Chinese))
    [16] 朱 晟, 魏匡民, 林道通. 筑坝土石料的统一广义塑性本构模型[J]. 岩土工程学报, 2014, 36(8): 1394-1399. (ZHU Sheng, WEI Kuang-min, LIN Dao-tong. Generalized plasticity model for soil and coarse-grained dam materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1394-1399. (in Chinese))
    [17] YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
    [18] YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics, 2008, 35(2): 210-222.
    [19] YAO Y P, YAMAMOTO H, WANG N D. Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(4): 603-608.
    [20] YAO Y P, SUN D A, LUO T. A critical state model for sands dependent on stress and density[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28: 323-337.
    [21] 姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. (YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. (in Chinese))
    [22] SATAKE M. Fabric tensor in granular materials[C]// IUTAM Conference on Deformation and Flow of Granular Materials, 1982: 63-68.
    [23] 谢定义, 齐吉琳. 土结构性及其定量化研究的新途径[J]. 岩土工程学报, 1999, 21(6): 651-656. (XIE Ding-yi, QI Ji-lin. Soil structure characteristics and new approach in research on its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 651-656. (in Chinese))
    [24] 刘斯宏, 姚仰平, 孙其诚, 等. 基于细观结构的颗粒介质应力应变关系研究[J]. 科学通报, 2009, 54(11): 1496-1503. (LIU Si-hong, YAO Yang-ping, SUN Qi-cheng, et al. Microscopic study on stress-strain relation of granular materials[J]. Chinese Science Bulletin, 2009, 54(11): 1496-1503. (in Chinese))
    [25] LIU Si-hong, WANG Zi-jian, WANG Yi-shu, et al. A yield function for granular materials based on microstructures[J]. Engineering Computations, 2015, 32(4): 1006-1024.
    [26] 沈珠江. 土的三重屈服面应力应变模式[J]. 固体力学学报, 1984, 5(2): 163-174. (SHEN Zhu-jiang. A stress strain model for soils with three yield surfaces[J]. Acta Mechanica Solida Sinica, 1984, 5(2): 163-174. (in Chinese))
    [27] YASUFUKU N, MURATA H, HYODO M, et al. A stress-strain relationship for anisotropically consolidated sand over a wide stress region[J]. Soils and Foundations, 1991, 31(4): 75-92.
计量
  • 文章访问数:  524
  • HTML全文浏览量:  4
  • PDF下载量:  654
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-30
  • 发布日期:  2017-05-24

目录

    /

    返回文章
    返回