[1] |
LALOUI L, MODARESSI H. Modelling of the thermo-hydro-plastic behaviour of clays[C]// HOTEIT N, ed. Hydro Mechanical and Thermohydromechanical Behaviour of Deep Argillaceous Rock. Rotterdam: Balkema, 2002: 161-170.
|
[2] |
DELAGE P, SULTAN N, CUI Y J. On the thermal consolidation of Boom clay[J]. Canadian Geotechnical Journal, 2000, 37(2): 343-354.
|
[3] |
刘泉声, 许锡昌, 出口勉, 等. 三峡花岗岩与温度及时间相关的力学性质试验研究[J]. 岩石力学与工程学报, 2001, 20(5): 715-719. (LIU Quan-sheng, XU Xi-chang, TSUTOMO Y, et al. Testing study on mechanical properties of the three gorges granite concerning temperature and time[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(5): 715-719. (in Chinese))
|
[4] |
宋世雄, 张建民. 砂土流变行为的热力学本构模型研究[J]. 岩土工程学报, 2015, 37(增刊1): 129-133. (SONG Shi-xiong, ZHANG Jian-min. Thermodynamic constitutive model for rheological behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 129-133. (in Chinese))
|
[5] |
梁玉雷, 冯夏庭, 周 辉, 等. 温度周期作用下大理岩三轴蠕变试验与理论模型研究[J]. 岩土力学, 2010, 31(10): 3107-3112. (Liang Yu-lei, Feng Xia-ting, Zhou Hui, et al. Research on triaxial creep experiment and theoretical model of marble under cyclic temperatures[J]. Rock & Soil Mechanics, 2010, 31(10): 3107-3112. (in Chinese))
|
[6] |
CAMPANELLA R G, MITCHELL J K. Influence of temperature variations on soil behavior[J]. Journal of Soil Mechanics and Foundations Engineering Division, ASCE, 1968, 94(3): 709-734.
|
[7] |
HABIBAGAHI K. Temperature effect and the concept of effective void ratio[J]. Indian Geotechnical Journal, 1977, 7(1): 14-34.
|
[8] |
AKAGI H, KOMIYA K. Constant rate of strain consolidation properties of clayey soil at high temperature[C]// Compression and Consolidation of Clayey Soils. Rotterdam: Balkema, 1995: 3-8.
|
[9] |
SHIMIZU M. Quantitative assessment of thermal acceleration of time effects in one-dimensional compression of clays[C]// Deformation Characteristics of Geomaterials. Lyon, 2003: 479-487.
|
[10] |
DE BRUYN D, THIMUS J F. The influence of temperature on mechanical characteristics of Boom clay: the results of an initial laboratory programme[J]. Engineering Geology, 1996, 41(1): 117-126.
|
[11] |
CUI Y J, LE T T, TANG A M, et al. Investigating the time-dependent behaviour of Boom clay under thermo-mechanical loading[J]. Géotechnique, 2009, 59: 319-29.
|
[12] |
高小平, 杨春和, 吴 文, 等. 盐岩蠕变特性温度效应的实验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2054-2059. (GAO Xiao-ping, YANG Chun-he, WU Wen, et al. Experimental studies on temperature dependent properties of creep of rock salt[J]. Chinese Journal of Rock Mechanics & Engineering, 2005, 24(12): 2054-2059. (in Chinese))
|
[13] |
OKADA T. Mechanical properties of sedimentary soft rock at high temperature. Part 2. Evaluation of temperature dependency of creep behavior based on unconfined compression test[R]. Chiba: Central Research Institute of Electric Power Industry, 2006. (in Japanese)
|
[14] |
李剑光, 王永岩. 软岩蠕变的温度效应及实验分析[J]. 煤炭学报, 2012, 37(增刊1): 81-85. (LI Jian-guang, WANG Yong-yan. Experimental analysis of temperature effect in creep of soft rock[J]. Journal of China Coal Society, 2012, 37(S1): 81-85. (in Chinese))
|
[15] |
龚 哲, 陈卫忠, 于洪丹, 等. 基于下加载面概念的饱和黏土温度-应力耦合弹塑性模型[J]. 岩石力学与工程学报, 2015. (GONG Zhe, CHEN Wei-zhong, YU Hong-dan, et al. Thermo-elasto-plastic model for saturated clay based on the concept of sub-loading surface[J]. Chinese Journal of Rock Mechanics & Engineering, 2015. (in Chinese))
|
[16] |
YASHIMA A, LEROUEIL S, OKA F, et al. Modelling temperature and strain rate dependent behavior of clays: One dimensional consolidation[J]. Soils and Foundations, 1998, 38(2): 63-73.
|
[17] |
高 峰, 徐小丽, 杨效军, 等. 岩石热黏弹塑性模型研究[J]. 岩石力学与工程学报, 2009, 28(1): 74-80. (GAO Feng, XU Xiao-li, YANG Xiao-jun, et al. Research on thermo-visco-elastoplastic model of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 74-80. (in Chinese))
|
[18] |
王春萍, 陈 亮, 梁家玮, 等. 考虑温度影响的花岗岩蠕变全过程本构模型研究[J]. 岩土力学, 2014, 35(9): 2493-2501. (WANG Chun-ping, CHEN Liang, LIANG Jia-wei, et al. Creep constitutive model for full creep process of granite considering thermal effect[J]. Rock and Soil Mechanics, 2014, 35(9): 2493-2501. (in Chinese))
|
[19] |
MODARESSI H, LALOUI L. A thermo-viscoplastic constitutive model for clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(5): 313-335.
|
[20] |
HASHIGUCHI K. Elasto-plastic constitutive laws of granular materials, constitutive equations of soils[C]// Constitutive Equations of Soils, Proc. 9th Int. Conf. Soil Mech. Found. Eng., Spec. Session 9. Tokyo, 1977: 73-82.
|
[21] |
YAMAKAWA Y, HASHIGUCHI K, IKEDA K. Implicit stress-update algorithm for isotropic Cam-clay model based on the subloading surface concept at finite strains[J]. International Journal of Plasticity, 2010, 26(5): 634-658.
|
[22] |
ZHANG S, LENG W, ZHANG F, et al. A simple thermo-elastoplastic model for geomaterials[J]. International Journal of Plasticity, 2012, 34: 93-113.
|
[23] |
ZHANG S, ZHANG F. A thermo-elasto-viscoplastic model for soft sedimentary rock[J]. Soils and Foundations, 2009, 49(4): 583-595.
|
[24] |
ZHANG F, YASHIMA A, NAKAI T, et al. An elasto-viscoplastic model for soft sedimentary rock based on tij concept and subloading yield surface[J]. Soils and foundations, 2005, 45(1): 65-73.
|
[25] |
SHARIATMADARI N, SAEIDIJAM S. The effect of thermal history on thermo-mechanical behavior of bentonite-sand mixture[J]. International Journal of Civil Engineering, 2012, 10(2): 162-167.
|