• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

铅污染土固化体冻融循环效应和微观机制

李江山, 王平, 张亭亭, 李振泽, 薛强

李江山, 王平, 张亭亭, 李振泽, 薛强. 铅污染土固化体冻融循环效应和微观机制[J]. 岩土工程学报, 2016, 38(11): 2043-2050. DOI: 10.11779/CJGE201611014
引用本文: 李江山, 王平, 张亭亭, 李振泽, 薛强. 铅污染土固化体冻融循环效应和微观机制[J]. 岩土工程学报, 2016, 38(11): 2043-2050. DOI: 10.11779/CJGE201611014
LI Jiang-shan, WANG Ping, ZHANG Ting-ting, LI Zhen-ze, XUE Qiang. Effect of freeze-thaw cycle on engineering properties and microstructure of stabilized/solidified lead contaminated soil treated by cement[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2043-2050. DOI: 10.11779/CJGE201611014
Citation: LI Jiang-shan, WANG Ping, ZHANG Ting-ting, LI Zhen-ze, XUE Qiang. Effect of freeze-thaw cycle on engineering properties and microstructure of stabilized/solidified lead contaminated soil treated by cement[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2043-2050. DOI: 10.11779/CJGE201611014

铅污染土固化体冻融循环效应和微观机制  English Version

基金项目: 国家自然科学基金项目(41602315,51479194); 中国科学
详细信息
    作者简介:

    李江山 (1987- ),男,博士,主要从事污染土多相体作用效应与修复技术研究。E-mail: ljs_cersm@163.com。

Effect of freeze-thaw cycle on engineering properties and microstructure of stabilized/solidified lead contaminated soil treated by cement

  • 摘要: 为了研究冻融循环对铅污染土固化体工程特性的影响规律及其作用机制,开展了不同压实度试样(90%,96%)的冻融循环试验。通过对经历不同冻融循环次数(0,3,6,10次)作用后的试样进行无侧限抗压强度、渗透和溶出特性试验,探讨了冻融循环作用对铅污染土固化体工程特性的影响规律。试验结果表明,冻融循环作用对不同压实度试样有着不同的影响规律。随着冻融循环次数增加,90%压实度试样的抗压强度降低、渗透性增大、铅浸出浓度增大,而96%试样呈现出相反的规律,即冻融循环对高压实度试样影响不大。为了探索冻融循环作用对铅污染土固化体工程特性影响的微观机制,开展了不同冻融循环作用下试样微观结构试验。试验结果表明,冻融循环对高压实度(96%)试样微观结构影响不大,随着时间的延长,试样内颗粒团聚,孔隙减小,试样内孔隙以颗粒间和团粒内孔隙为主;而冻融循环作用使低压实度试样(90%)孔隙增大,试样内颗粒团聚,团粒间大孔隙占主要比重,这是导致低压实度铅污染土固化体工程特性的劣化的根本原因。
    Abstract: Freeze-thaw cycle tests are conducted to investigate the engineering properties and mechanisms of cement- stabilized/solidified (S/S) lead-contaminated soils with different compaction degrees (90% and 96%). After different freeze-thaw cycles (0, 3, 6 and 10 times), the unconfined compressive strength tests, penetration tests and leaching tests are conducted on samples to investigate the effect of freeze-thaw cycles on engineering properties of S/S samples. The results showed that the freeze-thaw effect depends on the compaction degrees of samples. For the samples with compaction degree of 90%, the permeability and Pb leaching concentration increase with the freeze-thaw cycles, while the unconfined compressive strength decreases. However, little variation is observed for the samples with compaction degree of 96% as the freeze-thaw cycle increases. Scanning electron microscope (SEM) and mercury intrusion porosity (MIP) tests are also conducted to study the micro-mechanism. The results show that the freeze-thaw cycles pose little influence on the microstructure of S/S samples with compaction degree of 96%. Soil particles aggregate and porosity decreases with the freeze-thaw cycles. The inter-particular pores and intra-aggregate pores occupy a fairly large proportion. However, the freeze-thaw cycles enlarge the pore of samples with compaction degree of 90%, and the inter-aggregate pores take large proportion, which is the reason that the engineering properties of S/S samples with low compaction degree is weakened during the freeze-thaw cycles.
  • [1] 张孝飞, 林玉锁, 俞 飞, 等. 城市典型工业区土壤重金属污染状况研究[J]. 长江流域资源与环境, 2005, 4: 512-515. (ZHANG Xiao-fei, LIN Yu-suo, YU Fei, et al. Pollution of heavy metals in urban soils of typical industrial and surrounding residential aret in Nanjing city[J]. Resources and Environment in the Yangtze Basin, 2005, 4: 512-515. (in Chinese))
    [2] WEI B, YANG L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China[J]. Microchemical Journal, 2010, 94: 99-107.
    [3] BOZKURT S, MORENO L, NERETNIEKS I. Long term processes in waste deposits[J]. The Science of Total Environment, 2000, 250: 101-121.
    [4] US EPA. Treatment technologies for site cleanup: Annual status report[R]. 11th ed. Washington D C: Office of Solid Waste and Emergency Response, 2004.
    [5] 杜延军, 金 飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124. (DU Yan-jun, JIN Fei, LIU Song-yu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 2011, 32(1): 116-124. (in Chinese))
    [6] YANG Y, XUE J, HUANG Q. Studies on the solidification mechanisms of Ni and Cd in cement clinker during cement kiln co-processing of hazardous wastes[J]. Construction and Building Materials, 2014, 57: 138-143.
    [7] 刘兆鹏, 杜延军, 蒋宁俊, 等. 基于半动态淋滤试验的水泥固化铅污染黏土溶出特性研究[J]. 岩土工程学报, 2013, 35(12): 2212-2218. (LIU Zhao-peng, DU Yan-jun, JIANG Ning-jun, et al. Leaching properties of cement-solidified lead-contaminated clay via semi-dynamic Leaching tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2212-2218. (in Chinese))
    [8] TIRUTA B L, IMYIM A, BARNA R. Long-term prediction of the leaching behavior of pollutants from solidified wastes[J]. Advances in Environmental Research, 2004, 8: 697-711.
    [9] BURDEN, F. R, DONNERT D, GODISH T, et al. Environmental monitoring handbook[M]. New York: The McGraw-Hill Companies, 2004.
    [10] Al-Tabba A A, JOHNSON D. State of practice report-Stabilization/Solidification of contaminated materials with wet deep soil mixing[C]// Proc Deep Soil Mixing-2005. Sweden, 2005: 697-731.
    [11] DU Y J, WEI M L, REDDY K R, et al. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil[J]. Journal of Hazardous Materials, 2014, 271: 131-140.
    [12] 刘晶晶. 化学物质渗入作用下固化重金属污染土的稳定性研究[D]. 合肥: 合肥工业大学, 2014. LIU Jing-jing. The stability of solidified/stabilized heavy metal contaminated soils under erosive environment[D]. Hefei: Hefei University of Technology, 2014.
    [13] LI J S, XUE Q, WANG P, et al. Effect of drying-wetting cycles on leaching behavior of cement solidified lead-contaminated soil[J]. Chemosphere, 2014, 117: 10-13.
    [14] CUISINIER O, BORGNE T L, DENEELE D, et al. Quantification of the effects of nitrates, phosphates and chlorides on soil stabilization with lime and cement[J]. Eng Geol, 2011, 117(3/4): 229-235.
    [15] ASTMD 5084. Test method for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter[S]. 1990.
    [16] 陈 蕾, 杜延军, 刘松玉, 等. 水泥固化铅污染土的基本应力-应变特性研究[J]. 岩土力学, 2011, 32(3): 715-720. (CHEN Lei, DU Yan-jun, LIU Song-yu, et al. Experimental study of stress-strain properties of cement treated lead- contaminated soils[J]. Rock and Soil Mechanics, 2011, 32(3): 715-721. (in Chinese))
    [17] KAMON M, YING C Y, KATSUMI T. Effect of acid rain on lime and cement stabilized soils[J]. Soils and Foundations, 1996, 36(4): 91-99.
    [18] TRUSSEL S S, SPENCE R D. A review of stabilisation/ solidification interferes[J]. Waste Management, 1994, 14: 507-519.
    [19] XUE Q, LI J S, LIU, L. Effect of compaction degree on solidification characteristics of PB-contaminated soil treated by cement[J]. Clean-Soil Air Water, 2013, 42(8): 1126-1132.
    [20] SHEAR D L, OLSEN H W, NELSON K R. Effects of desiccation on the hydraulic conductivity versus void ratio relationship for a natural clay [M]. Washington DC: National Academy Press, 1993: 1365-1370.
    [21] HORPIBULSUK S, RACHAN R, CHINKULKIJNIWAT A, et al. Analysis of strength development in cement-stabilized silty clay from microstructural considerations[J]. Construction and Building Materials, 2010, 24: 2011-2021.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-12
  • 发布日期:  2016-11-19

目录

    /

    返回文章
    返回