• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于EMD_SVD的矿山微震与爆破信号特征提取及分类方法

尚雪义, 李夕兵, 彭康, 董陇军, 王泽伟

尚雪义, 李夕兵, 彭康, 董陇军, 王泽伟. 基于EMD_SVD的矿山微震与爆破信号特征提取及分类方法[J]. 岩土工程学报, 2016, 38(10): 1849-1858. DOI: 10.11779/CJGE201610014
引用本文: 尚雪义, 李夕兵, 彭康, 董陇军, 王泽伟. 基于EMD_SVD的矿山微震与爆破信号特征提取及分类方法[J]. 岩土工程学报, 2016, 38(10): 1849-1858. DOI: 10.11779/CJGE201610014
SHANG Xue-yi, LI Xi-bing, PENG Kang, DONG Long-jun, WANG Ze-wei. Feature extraction and classification of mine microseism and blast based on EMD-SVD[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1849-1858. DOI: 10.11779/CJGE201610014
Citation: SHANG Xue-yi, LI Xi-bing, PENG Kang, DONG Long-jun, WANG Ze-wei. Feature extraction and classification of mine microseism and blast based on EMD-SVD[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1849-1858. DOI: 10.11779/CJGE201610014

基于EMD_SVD的矿山微震与爆破信号特征提取及分类方法  English Version

基金项目: 国家自然科学基金项目(41272304); 国家重点研发项目(2016YFC0600706); 国家自然科学基金青年基金项目(51504044)
详细信息
    作者简介:

    尚雪义(1989- ),男,博士研究生,主要从事矿山微震信号处理、微震区域性分析及震源机制等方面的研究工作。E-mail: shangxueyi@csu.edu.cn。

    通讯作者:

    李夕兵,E-mail:xbli@mail.csu.edu.cn

Feature extraction and classification of mine microseism and blast based on EMD-SVD

  • 摘要: 针对矿山微震与爆破信号难以识别的问题,提出了基于经验模态分解(EMD)和奇异值分解(SVD)的矿山信号特征提取及分类方法。首先对微震与爆破信号进行EMD分解,再借助相关系数和方差贡献率筛选得到主要本征模态分量为IMF1~IMF6,进而利用SVD计算主要本征模态分量构成矩阵的奇异值σi(i=1,2···,6),最后应用支持向量机(SVM)对用沙坝矿微震与爆破信号进行分类。结果表明:微震与爆破信号的奇异值σ12和σ3差异较大,且σ1=7.5作为识别分界值时准确率达到了88.25%;SVM法识别效果优于BP神经网络法、Bayes法和单一奇异值分界值法,且SVM法准确率达到了93.0%。由此,该方法可为矿山微震与爆破信号特征提取和分类提供一种新方法。
    Abstract: To solve the difficult problem in identifying rock mass microseism and blasting vibration signals, a method for feature extraction and classification is proposed based on the empirical mode decomposition (EMD) and singular value decomposition (SVD). Firstly, the mine signals are decomposed by EMD, and the IMF1 to IMF6 selected by correlation coefficients and variance contribution ratios are the main intrinsic mode functions (IMFs). Then the SVD is used to obtain singular valuesσi(i=1,2···,6) of feature vector matrix constructed of the main IMFs. Furthermore, the support vector machine (SVM) is adopted to train, classify and recognize the signals of Yongshaba mine. The results show that there are large differences of singular valuesσ12 and σ3 between microseisms and blasts, and the best pattern recognition is obtained whenσ1 is 7.5 with an accuracy rate of 88.25%. In addition, the SVM method with an accuracy rate of 93% is better than the BP neural network method, Bayes method and boundary value method. In conclusion, the proposed method provides a new way for the feature extraction and classification of mine microseism and blast.
  • [1] 董陇军, 李夕兵, 唐礼忠, 等. 无需预先测速的微震震源定位的数学形式及震源参数确定[J]. 岩石力学与工程学报, 2011, 30(10): 2057-2067. (DONG Long-jun, LI Xi-bing, TANG Li-zhong, et al. Mathematical functions and parameters for microseismic source location without pre-measuring speed[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2057-2067. (in Chinese))
    [2] 张楚旋, 李夕兵, 董陇军, 等. 三函数四指标矿震信号 S 波到时拾取方法及应用[J]. 岩石力学与工程学报, 2015, 34(8): 1650-1659. (ZHANG Chu-xuan, LI Xi-bing, DONG Long-jun, et al. A S-wave phase picking method with four indicators of three functions for microseismic signal in mines[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1650-1659. (in Chinese))
    [3] DONG L J, LI X B. Three-dimensional analytical solution of acoustic emission or microseismic source location under cube monitoring network[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(12): 3087-3094.
    [4] LASOCKI S, ORLECKA-SIKORA B. Seismic hazard assessment under complex source size distribution of mining-induced seismicity[J]. Tectonophysics, 2008, 456(1): 28-37.
    [5] LEŚNIAK A, ISAKOW Z. Space-time clustering of seismic events and hazard assessment in the Zabrze-Bielszowice coal mine, Poland[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5): 918-928.
    [6] 唐礼忠, 杨承祥, 潘长良. 大规模深井开采微震监测系统站网布置优化[J]. 岩石力学与工程学报, 2006, 25(10): 2036-2042. (TANG Li-zhong, YANG Cheng-xiang, PAN Chang-liang. Optimization of microseismic monitoring network for large-scale deep well mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2036-2042. (in Chinese))
    [7] 赵兴东, 石长岩, 刘建坡, 等. 红透山铜矿微震监测系统及其应用[J]. 东北大学学报 (自然科学版), 2008, 29(3): 399-402. (ZHAO Xing-dong, DAN Chang-yan, LIU Jian-po, et al. Microseismic monitoring system establishment and its application study in hongtoushan copper mine[J]. Journal of Northeastern University (Natural Science), 2008, 29(3): 399-402. (in Chinese))
    [8] Abdul-Wahed M K, Al Heib M, SENFAUTE G. Mining-induced seismicity: seismic measurement using multiplet approach and numerical modeling[J]. International Journal of Coal Geology, 2006, 66(1): 137-147.
    [9] 李庶林, 尹贤刚, 郑文达. 凡口铅锌矿多通道微震监测系统及其应用研究[J]. 岩石力学与工程学报, 2005, 24(12): 2048-2053. (LI Shu-lin, YIN Xian-gang, ZHENG Wen-da, et al. Research of multi-channel microseismic monitoring system and its application to Fankou lead-zinc mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2048-2053. (in Chinese))
    [10] MAXWELL S C, RUTLEDGE J, JONES R, et al. Petroleum reservoir characterization using downhole microseismic monitoring[J]. Geophysics, 2010, 75(5): 75A129-75A137.
    [11] 刘振武, 撒利明, 巫芙蓉, 等. 中国石油集团非常规油气微地震监测技术现状及发展方向[J]. 石油地球物理勘探, 2013, 48(5): 843-853. (LIU Zhen-wu, SA Li-ming, WU Fu-rong, et al. Microseismic monitor technology status for unconventional resource E & P and its future development in CNPC[J]. Oil Geophysical Prospecting, 2013, 48(5): 843-853. (in Chinese))
    [12] 徐奴文, 唐春安, 沙 椿, 等. 锦屏一级水电站左岸边坡微震监测系统及其工程应用[J]. 岩石力学与工程学报, 2010, 29(5): 915-925. (XU Nu-wen, TANG Chun-an, SHA Chun, et al. Microseismic monitoring system establishment and its engineering applications to left bank slope of Jinping I Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 915-925.
    [13] 徐奴文, 唐春安, 周 钟, 等. 岩石边坡潜在失稳区域微震识别方法[J]. 岩石力学与工程学报, 2011, 30(5): 893-900. (XU Nu-wen, TANG Chun-an, ZHOU Zhong, et al. Identification method of potential failure regions of rock slope using microseismic monitoring technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 893-900. (in Chinese))
    [14] SPILLMANN T, MAURER H, GREEN A G, et al. Microseismic investigation of an unstable mountain slope in the Swiss Alps[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 2007, 112(B07301): 1-25.
    [15] 陈炳瑞, 冯夏庭, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 时滞型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 561-569. (CHEN Bing-rui, FENG Xia-ting, MING Hua-jun, et al. Evolution law and mechanism of rockburst in deep tunnel: time delayed rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 561-569.(in Chinese))
    [16] 冯夏庭, 陈炳瑞, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 即时型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 433-444. (CHEN Bing-rui, FENG Xia-ting, MING Hua-jun, et al. Evolution law and mechanism of rockburst in deep tunnel: immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 433-444. (in Chinese))
    [17] FENG G L, FENG X T, CHEN B R, et al. Sectional velocity model for microseismic source location in tunnels[J]. Tunnelling and Underground Space Technology, 2015(45): 73-83.
    [18] CAI M, KAISER P K, MARTIN C D. Quantification of rock mass damage in underground excavations from microseismic event monitoring[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(8): 1135-1145.
    [19] 朱权洁, 姜福兴, 尹永明, 等. 基于小波分形特征与模式识别的矿山微震波形识别研究[J]. 岩土工程学报, 2012, 34(11): 2036-2042. (ZHU Quan-jie, JIANG Fu-xing, YIN Yong-ming, et al. Classification of mine microseismic events based on wavelet-fractal method and pattern recognition[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2036-2042. (in Chinese))
    [20] 曹安业, 窦林名, 秦玉红, 等. 高应力区微震监测信号特征分析[J]. 采矿与安全工程学报, 2007, 24(2): 146-149. (CAO An-ye, DOU Lin-ming, QIN Yu-hong, et al. Characteristic of microseismic monitoring signal in high stressed zone[J]. Journal of Mining & Safety Engineering, 2007, 24(2): 146-149. (in Chinese))
    [21] ALLMANN B P, SHEARER P M, HAUKSSON E. Spectral discrimination between quarry blasts and earthquakes in Southern California[J]. Bulletin of the Seismological Society of America, 2008, 98(4): 2073-2079.
    [22] 陆菜平, 窦林名, 吴兴荣, 等. 煤岩冲击前兆微震频谱演变规律的试验与实证研究[J]. 岩石力学与工程学报, 2008, 27(3): 519-525. (LU Cai-ping, DOU Lin-ming, WU Xing-rong, et al. Experimental and empirical research on frequency-spectrum evolvement rule of rockburst precursory microseismic signals of coal-rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 519-525. (in Chinese))
    [23] 唐守锋, 童敏明, 潘玉祥, 等. 煤岩破裂微震信号的小波特征能谱系数分析法[J]. 仪器仪表学报, 2011, 32(7): 1521-1527. (TANG Shou-feng, TONG Min-ming, PAN Yu-xiang, et al. Energy spectrum coefficient analysis of wavelet features for coal rupture microseismic signal[J]. Chinese Journal of Scientific Instrument, 2011, 32(7): 1522-1527. (in Chinese))
    [24] 朱权洁, 姜福兴, 于正兴, 等. 爆破震动与岩石破裂微震信号能量分布特征研究[J]. 岩石力学与工程学报, 2012, 31(4): 723-730. (ZHU Quan-jie, JIANG Fu-xing, YU Zheng-xing, et al. Study on energy distribution characters about blasting vibration and rock fracture microseismic signal[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 723-730. (in Chinese))
    [25] 赵国彦, 邓青林, 马 举. 基于FSWT时频分析的矿山微震信号分析与识别[J]. 岩土工程学报, 2015, 37(2): 306-312. (ZHAO Guo-yan, DENG Qing-lin, MA Ju. Analysis and recognition of mine microseismic signals based on FSWT time-frequency analysis[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 306-312. (in Chinese))
    [26] MA J, ZHAO G Y, DONG L J, et al. Classification of mine blasts and microseismic events using starting-up features in seismograms[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3410-3420.
    [27] MA J, ZHAO G Y, DONG L J, et al. A comparison of mine seismic discriminators based on features of source parameters to waveform characteristics[J]. Shock and Vibration, 2015: 1-10.
    [28] DONG L J, LI X B, XIE G N. Nonlinear methodologies for identifying seismic event and nuclear explosion using random forest, support vector machine, and naive Bayes classification[J]. Abstract and Applied Analysis, 2014(1): 1-8.
    [29] DONG L J, WESSELOO J, POTVIN Y, et al. Discrimination of mine seismic events and blasts using the fisher classifier, naive bayesian classifier and logistic regression[J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 183-211.
    [30] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]// Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Great Britain: The Royal Society, 1998: 903-995.
    [31] 尹柏强, 何怡刚, 吴先明. 心磁信号广义S变换域奇异值分解滤波方法[J]. 物理学报, 2013, 62(14): 148702-148702. (YIN Bai-qiang, HE Yi-gang, WU Xian-ming. A method for magnetocardiograms filtering based on singular value decomposition and S-transform[J]. Acta Physica Sinia, 2013, 62(14): 148702-148702. (in Chinese))
    [32] LUO B, HANCOCK E R. Structural graph matching using the EM algorithm and singular value decomposition[J]. Pattern Analysis and Machine Intelligence, 2001, 23(10): 1120-1136.
    [33] 徐 锋, 刘云飞. 基于 EMD-SVD 的声发射信号特征提取及分类方法[J]. 应用基础与工程科学学报, 2014, 22(6): 1238-1247. (XU Feng, LIU Yun-fei. Feature extraction and classification method of acoustic emission signals generated from plywood damage based on EMD-SVD[J]. Journal of Basic Science And Engineering, 2014, 22(6): 1238-1247. (in Chinese))
    [34] WANG G F, LUO Z G, QIN X D, et al. Fault identification and classification of rolling element bearing based on time-varying autoregressive spectrum[J]. Mechanical Systems and Signal Processing, 2008, 22(4): 934-947.
    [35] AI L M, WANG J, YAO R X. Classification of parkinsonian and essential tremor using empirical mode decomposition and support vector machine[J]. Digital Signal Processing, 2011, 21(4): 543-550.
    [36] 徐 锋, 刘云飞, 宋 军. 基于中值滤波-SVD和EMD的声发射信号特征提取[J]. 仪器仪表学报, 2011, 32(12): 2712-2719. (XU Feng, LIU Yun-fei, SONG Jun. Feature extraction of acoustic emission signals based on median filter-singular value decomposition and empirical mode decomposition[J]. Chinese Journal of Scientific Instrument, 2011, 32(12): 2712-2719. (in Chinese))
    [37] VAPNIK V. The nature of statistical learning theory[M]. New York: Springer, 1995.
计量
  • 文章访问数:  714
  • HTML全文浏览量:  1
  • PDF下载量:  487
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-29
  • 发布日期:  2016-10-24

目录

    /

    返回文章
    返回