• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

黏土垫层水力-力学-化学耦合模型研究

张志红, 师玉敏, 朱敏

张志红, 师玉敏, 朱敏. 黏土垫层水力-力学-化学耦合模型研究[J]. 岩土工程学报, 2016, 38(7): 1283-1290. DOI: 10.11779/CJGE201607016
引用本文: 张志红, 师玉敏, 朱敏. 黏土垫层水力-力学-化学耦合模型研究[J]. 岩土工程学报, 2016, 38(7): 1283-1290. DOI: 10.11779/CJGE201607016
ZHANG Zhi-hong, SHI Yu-min, ZHU Min. Coupled hydro-mechanical-chemical model for clay liner[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1283-1290. DOI: 10.11779/CJGE201607016
Citation: ZHANG Zhi-hong, SHI Yu-min, ZHU Min. Coupled hydro-mechanical-chemical model for clay liner[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1283-1290. DOI: 10.11779/CJGE201607016

黏土垫层水力-力学-化学耦合模型研究  English Version

基金项目: 国家自然科学基金面上项目(51378035)
详细信息
    作者简介:

    张志红(1976- ),女,副教授,硕士生导师,主要从事环境岩土工程研究。E-mail: zhangzh2002@bjut.edu.cn。

Coupled hydro-mechanical-chemical model for clay liner

  • 摘要: 在城市固废堆场建造运维、污染场地土壤、地下水围封阻隔等环境岩土、污染防治领域中,均会涉及到土体力学行为、孔隙水流动以及污染物运移之间的耦合作用问题。将土体的固结变形分为由力学荷载引起的力学固结变形及由化学荷载引起的化学-渗透固结变形,引入广义达西定律,并考虑土体物理特性和输运性质的动态变化,通过理论推导建立了适用于堆场黏土防渗垫层的水力-力学-化学耦合模型,模型最大的特点是实现了土体固结变形、孔隙流体流动与污染物运移过程之间的全耦合,各模型参数均能够体现耦合效应的影响。采用多场耦合有限元分析软件COMSOL Multiphysics对所建模型进行数值验证和求解,模拟结果表明:所建模型可从机理上描述水力-力学-化学全耦合过程,模拟结果与Peters和Smith模拟结果吻合较好,能够正确揭示超孔隙水压力、污染物浓度时空分布及土体固结变形的演化规律。
    Abstract: The interconnection among mechanical behaviors of soil, pore water flow and contaminant transport is always involved in the fields of environmental geotechnical engineering and controlling of pollution. The related problems include the construction and maintenance of urban solid waste yards, and the protection of soil and groundwater from pollution. The consolidation deformation of soil is divided into two parts: mechanical consolidation deformation caused by mechanical loading and chemo-osmotic consolidation deformation caused by chemical loading. Then, based on the generalized Darcy’s law and considering dynamic variation of soil physical and transport properties, the coupled hydro-mechanical-chemical model for clay liner is established through theoretical deduction. The remarkable characteristic of the model is that it achieves a full coupling of the consolidation deformation of soil, pore fluid flow and contaminant transport processes. Furthermore, the parameters of the coupled model can also reflect the impacts of coupling effects. The finite element software COMSOL Mutiphysics is adopted to work out the solution of the proposed coupled model and verify its correctness. The numerical results illustrate that the established model can describe the coupled hydro-mechanical-chemical process through inquiring into mechanism., Moreover, the results agree well with those of Peters and Smith. The proposed model can accurately reveal the spatial and temporal distribution of the excess pore water pressure, contaminant concentrations and evolution consolidation deformation of soil.
  • [1] 陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. (CHEN Yun-min. A fundamental theory of environmental geotechnics and its application[J]. Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese))
    [2] ALSHAWABKEH A N, RAHBAR N, SHEAHAN T C, et al. Volume change effects on solute transport in clay under consolidation[C]// Advances in Geotechnical Engineering with Emphasis on Dams, Highway Materials, and Soil Improvement. Geo Jordan: Geotechnical Practice Publication, 2004: 105-115.
    [3] ZHANG Z H, XU Z G, DU X L, et al. Impact of consolidation pressure on contaminant migration in clay liner[J]. Water Science and Engineering, 2013, 6(3): 340-353.
    [4] 黄 璐, 赵成刚, 张雪东, 等. 输运性质受固结过程影响的污染物输运模型[J]. 岩土工程学报, 2010, 32(3): 420-427. (HUANG Lu, ZHAO Cheng-gang, ZHANG Xue-dong, et al. Contaminant migration model with consolidation dependent transport coefficients[J]. Journal of Geotechnical Engineering, 2010, 32(3): 420-427. (in Chinese))
    [5] MITCHELL J K, GREENBERG J A, WITHERSPOON P A. Chemico-osmotic effects in fine-grained soils[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(4): 307-322.
    [6] MARINE I W, FRITZ S J. Osmotic model to explain anomalous hydraulic heads[J]. Water Resources Research, 1981, 17(1): 73-82.
    [7] .FRITZ S J. Ideality of clay membranes in osmotic processes: a review[J]. Clays and Clay Minerals, 1986, 34(2): 214-223.
    [8] KACZMAREK M, HUECKEL T. Chemo-mechanical consolidation of clays: analytical solutions for a linearized one-dimensional problem[J]. Transport in Porous Media, 1998, 32(1): 49-74.
    [9] KACZMAREK M. Chemically induced deformation of a porous layer coupled with advective-dispersive transport. Analytical solutions[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2001, 25(8): 757-770.
    [10] PETERS G P, SMITH D W. The influence of advective transport on coupled chemical and mechanical consolidation of clays[J]. Mechanics of Materials, 2004, 36(5): 467-486.
    [11] LI Y C, CLEALL P J, THOMAS H R. Multi-dimensional chemo-osmotic consolidation of clays[J]. Computers and Geotechnics, 2011, 38(4): 423-429.
    [12] WITTEVEEN P, FERRARI A, LALOUI L. An experimental and constitutive investigation on the chemo-mechanical behavior of a clay[J]. Géotechnique, 2013, 63(3): 244-255.
    [13] 兰吉武. 填埋场渗滤液产生, 运移及水位雍高机理和控制[D]. 杭州: 浙江大学, 2012. (LAN Ji-wu. Mechanism of leachate generation, transport and mound in MSW landfills and control of leachate level[D]. Hangzhou: Zhejiang University, 2012. (in Chinese))
    [14] 林 銮, 杨庆生. 化学-力学耦合理论与数值方法[J]. 固体力学学报, 2008, 29(1): 7-12 (LIN Luan, YANG Qing-sheng. The basis equations of chemo-mechanical coupling and corresponding numerical analysis[J]. Chinese Journal of Solid Mechanics, 2008, 29(1): 7-12. (in Chinese))
    [15] BIOT M A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. Journal of Applied Physics, 1955, 26(2): 182-191.
    [16] NOORISHED J, TSANG C F, WITHERSPOON P A. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach[J]. Journal of Geophyical Research, 1984, 89(B12): 10365-10373.
    [17] HART R D, ST JOHN C M. Formulation of a fully-coupled thermal-mechanical-fluid flow model for non-linear geologic systems[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1986, 23(3): 213-224.
    [18] 王洪涛. 多孔介质污染物迁移动力学[M]. 北京: 高等教育, 2008. (WANG Hong-tao. Dynamics of fluid flow and contaminant transport in porous media[M]. Beijing: High Education Press, 2008. (in Chinese))
    [19] 刘建国, 王洪涛, 聂永丰. 多孔介质中溶质有效扩散系数预测的分形模型[J]. 水科学进展, 2004, 15(4): 458-462. (LIU Jian-guo, WANG Hong-tao, NIE Yong-feng. Fractal model for predicting effective diffusion coefficient of solute in porous media. Advances in Water Science, 2004, 15(4): 458-462. (in Chinese))
  • 期刊类型引用(4)

    1. 钟紫蓝,史跃波,李锦强,赵密,杜修力. 考虑土体动力特征参数相关性的工程场地随机地震反应分析. 岩土力学. 2022(07): 2015-2024+2033 . 百度学术
    2. 闫静茹,张郁山,阚文亮. 地震动场地调整系数研究. 地震学报. 2022(05): 783-796 . 百度学术
    3. 李平,周楷,刘应慈,李玉影,朱胜. 场地抗震分类方法对比研究——以松原场地为例. 防灾科技学院学报. 2021(02): 39-45 . 百度学术
    4. 周勇,丁海平,于彦彦. 基于反演基岩加速度的场地放大系数的探讨. 苏州科技大学学报(工程技术版). 2020(03): 1-5 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  483
  • HTML全文浏览量:  7
  • PDF下载量:  829
  • 被引次数: 9
出版历程
  • 收稿日期:  2015-07-12
  • 发布日期:  2016-07-24

目录

    /

    返回文章
    返回