• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

结构性软黏土的一维弹黏塑性模型

柯文汇, 陈健, 盛谦

柯文汇, 陈健, 盛谦. 结构性软黏土的一维弹黏塑性模型[J]. 岩土工程学报, 2016, 38(3): 494-503. DOI: 10.11779/CJGE201603013
引用本文: 柯文汇, 陈健, 盛谦. 结构性软黏土的一维弹黏塑性模型[J]. 岩土工程学报, 2016, 38(3): 494-503. DOI: 10.11779/CJGE201603013
KE Wen-hui, CHEN Jian, SHENG Qian. One-dimensional elasto-viscoplastic model for structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 494-503. DOI: 10.11779/CJGE201603013
Citation: KE Wen-hui, CHEN Jian, SHENG Qian. One-dimensional elasto-viscoplastic model for structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 494-503. DOI: 10.11779/CJGE201603013

结构性软黏土的一维弹黏塑性模型  English Version

基金项目: 中国科学院重点部署项目,百人计划项目(KZZD-EW-TZ-12); 国家重点基础研究发展计划("973"计划)项目(2015CB057905); 中国科学院科技服务网络计划(STS)(KFJ-EW-STS-122)
详细信息
    作者简介:

    柯文汇(1987- ),男,湖北黄石人,博士研究生,主要从事软土工程特性及软土地下工程变形机理方面的研究.E-mail: kewenhui1989@126.com.

    通讯作者:

    陈健

  • 中图分类号: TU447

One-dimensional elasto-viscoplastic model for structured soft clays

  • 摘要: 为了研究结构性软黏土一维压缩变形的时效特征和结构破坏特征的耦合效应,首先,基于Bjerrum的等时间线体系,提出等黏塑性应变率线概念,建立非结构性软黏土的新型一维弹黏塑性模型;然后,在大量试验结果的基础上,揭示了一维压缩过程中压缩指数随孔隙比的变化规律,并提出了土体结构渐进破坏的新型描述模式;仿照特征体积,定义了"本征体积"和"本征应变"的概念,得到了结构性软黏土的"本征压缩定律",并推导了结构性软黏土的蠕变方程,构建了结构性软黏土的一维弹黏塑性模型.最后,阐述了模型参数的确定方法,所有参数均可通过试验直接确定,并用本文模型对宁波天然软黏土的常规压缩试验和长期蠕变试验,Berthierville clay,Ariake clay的一维等应变率压缩试验进行模拟,验证了该模型的有效性.研究结果表明,该模型能很好地模拟结构性软黏土一维压缩变形的时间效应和结构破坏效应,为建立结构性软黏土三维时效本构模型奠定了基础.
    Abstract: The purpose of this study is to present the development of a one-dimensional elasto-viscoplastic (1DEVP) constitutive model to describe the destruction effects on the time-dependent behavior of structured soft clays. Firstly, the new concept of viscoplastic strain rate lines is proposed based on the Bjerrum's concept of time lines, and the 1DEVP model for unstructured soft clays is established. Secondly, with the variation law of compression index with void ratio with one-dimensional compression being revealed, a new description for the progressive destruction during 1D loading is proposed for the structured soft clays. Thirdly, based on the definitions of "intrinsic volume" and "intrinsic strain", the intrinsic compression law for soft clays is obtained consequently. And after the derivation of creep function for the structured soft clays, 1DEVP model considering destruction effects is established, with all model parameters being calibrated in a straightforward way. Furthermore, the newly developed model is used to simulate the conventional oedometer tests and long-term creep oedometer tests on Ningbo natural clays as well as the CRS oedometer tests on Berthierville clays and Ariake clays. The comparisons between the simulated and experimental results show that the newly proposed 1DEVP model can reasonably describe the coupled effects of the time dependence and the bond degradation of soft sensitive clays. Although the model is proposed for 1D analysis, it is helpful for providing the theoretical basis for establishing 3D elasto-viscoplastic models for the structured soft clays.
  • [1] LEROUEIL S, KABBAJ M, TAVENAS F, et al. Stress-strain-strain rate relation for the compressibility of sensitive natural clays[J]. Géotechnique, 1985, 35(2): 159-180.
    [2] LEROUEIL S, KABBAJ M, TAVENAS F. Study of the validity of a model in in situ conditions[J]. Soils and Foundations, 1988, 28(3): 13-25.
    [3] BJERRUM L. Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings[J]. Géotechnique, 1967, 17(2): 83-118.
    [4] MESRI G, GODLEWSKI P M. Time and stress- compressibility interrelationship[J]. Journal of the Geotechnical Engineering Division, 1977, 103(5): 417-430.
    [5] YIN J, GRAHAM J. Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays[J]. Canadian Geotechnical Journal, 1989, 26(2): 199-209.
    [6] YIN J, GRAHAM J. Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress-strain behaviour of clays[J]. Canadian Geotechnical Journal, 1994, 31(1): 42-52.
    [7] YIN Z, WANG J. A one-dimensional strain-rate based model for soft structured clays[J]. Science China Technological Sciences, 2012, 55(1): 90-100.
    [8] 王立忠, 但汉波. K 0 固结软黏土的弹黏塑性本构模型[J]. 岩土工程学报, 2007, 29(9): 1344-1354. (WANG Li-zhong, DAN Han-bo. Elastic viscoplastic constitutive model for K 0 -consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354. (in Chinese))
    [9] NASH D, BROWN M. A comparison of four elastic visco-plastic models for soft clay[M]. Constitutive Modeling of Geomaterials, 2013: 121-124.
    [10] 柯文汇, 陈 建, 盛 谦, 等. 一个描述软黏土时效特性的一维弹黏塑性模型[J]. 岩土力学, 待刊. (KE Wen-hui, CHEN Jian, SHENG Qian, et al. A one-dimensional elasto-viscoplastic model for describing time-dependent behavior of soft clays[J]. Rock and Soil Mechanics, in press. (in Chinese))
    [11] BAUDET B, STALLEBRASS S. A constitutive model for structured clays[J]. Géotechnique, 2004, 54(4): 269-278.
    [12] LIU M D, CARTER J P. Modelling the destructuring of soils during virgin compression[J]. Géotechnique, 2000, 50(4): 479-483.
    [13] 蒋明镜, 刘静德, 孙渝刚. 基于微观破损规律的结构性土本构模型[J]. 岩土工程学报, 2013, 35(6): 1134-1139. (JIANG Ming-jing, LIU Jing-de, SUN Yu-gang. Constitutive relation considered the soils structure[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1134-1139. (in Chinese))
    [14] 尹振宇. 天然软黏土的弹黏塑性本构模型:进展及发展[J]. 岩土工程学报, 2011, 33(9): 1357-1369. (YIN Zhen-yu. Elastic viscoplastic models for natural soft clay: review and development[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1357-1369. (in Chinese))
    [15] KARIM M R, OKA F, KRABBENHOFT K, et al. Simulation of long‐term consolidation behavior of soft sensitive clay using an elasto-viscoplastic constitutive model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(16): 2801-2824.
    [16] HINCHBERGER S D, QU G. Viscoplastic constitutive approach for rate-sensitive structured clays[J]. Canadian Geotechnical Journal, 2009, 46(6): 609-626.
    [17] 曾玲玲, 刘松玉, 洪振舜. 考虑土结构性影响的改进EVP压缩模型[J]. 东南大学学报(自然科学版), 2012, 42(2): 346-351. (ZENG Ling-ling, LIU Song-yu, HONG Zhen-shun. Modified EVP model considering effect of soil structure[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(2): 346-351. (in Chinese))
    [18] LOW H, PHOON K, TAN T, et al. Effect of soil microstructure on the compressibility of natural Singapore marine clay[J]. Canadian Geotechnical Journal, 2008, 45(2): 161-176.
    [19] JUNG Y, FINNO R J, CHO W. Stress-strain responses of reconstituted and natural compressible Chicago glacial clay[J]. Engineering Geology, 2012, 129(1): 9-19.
    [20] JIA R. Consolidation behavior of Ariake clay under constant rate of strain[D]. Saga: Saga University, 2010.
    [21] SMITH P R, JARDINE R J, HIGHT D W. The yielding of Bothkennar clay[J]. Géotechnique. 1992, 42(2): 257-274.
    [22] ISLAM M K, CARTER J P, SIDDIQUEE M, et al. A method for derivation of compression equation and value of degradation exponent for structured soils[J]. Geotechnical and Geological Engineering, 2013, 31(5): 1587-1601.
    [23] PERRET D, LOCAT J, LEROUEIL S. Strength development with burial in fine-grained sediments from the Saguenay Fjord, Quebec[J]. Canadian Geotechnical Journal, 1995, 32(2): 247-262.
    [24] TANAKA H, LOCAT J, SHIBUYA S, et al. Characterization of Singapore, Bangkok, and Ariake clays[J]. Canadian Geotechnical Journal, 2001, 38(2): 378-400.
    [25] 曾玲玲, 洪振舜, 刘松玉, 等. 天然沉积结构性土的次固结变形预测方法[J]. 岩土力学, 2011, 32(10): 3136-3142. (ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu,et al. A method for predicting deformation caused by secondary consolidation for naturally sedimentary structural clays[J]. Rock and Soil Mechanics, 2011, 32(10): 3136-3142. (in Chinese))
    [26] DEN H E J. The formulation of virgin compression of soils[J]. Géotechnique, 1992, 42(3): 465-483.
    [27] 柯文汇, 陈 建, 盛 谦,等. 结构性软黏土一维压缩变形特性的数学描述[J]. 长江科学院院报, 待刊. (KE Wen-hui, CHEN Jian, SHENG Qian, et al. Description of one-dimensional compression behaviour for structured soft clays[J]. Journal of Yangtze River Scientific Research Institut, in press. (in Chinese))
    [28] BERRY P L, POSKITT T J. The consolidation of peat[J]. Géotechnique, 1972, 22(1): 27-52.
    [29] CHAI J, MIURA N, ZHU H, YUDHBIR. Compression and consolidation characteristics of structured natural clay[J]. Canadian Geotechnical Journal, 2004, 41(6): 1250-1258.
    [30] TAVENAS F, JEAN P, LEBLOND P, et al. The permeability of natural soft clays. Part II: Permeability characteristics[J]. Canadian Geotechnical Journal, 1983, 20(4): 645-660.
计量
  • 文章访问数:  364
  • HTML全文浏览量:  4
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-08
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回