• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

三轴试样破坏后应变局部化影响的实验研究

邵龙潭, 刘港, 郭晓霞

邵龙潭, 刘港, 郭晓霞. 三轴试样破坏后应变局部化影响的实验研究[J]. 岩土工程学报, 2016, 38(3): 385-394. DOI: 10.11779/CJGE201603001
引用本文: 邵龙潭, 刘港, 郭晓霞. 三轴试样破坏后应变局部化影响的实验研究[J]. 岩土工程学报, 2016, 38(3): 385-394. DOI: 10.11779/CJGE201603001
SHAO Long-tan, LIU Gang, GUO Xiao-xia. Effects of strain localization of triaxial samples in post-failure state[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 385-394. DOI: 10.11779/CJGE201603001
Citation: SHAO Long-tan, LIU Gang, GUO Xiao-xia. Effects of strain localization of triaxial samples in post-failure state[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 385-394. DOI: 10.11779/CJGE201603001

三轴试样破坏后应变局部化影响的实验研究  English Version

基金项目: 国家自然科学基金项目(51309047)
详细信息
    作者简介:

    邵龙潭(1963- ),男,教授,博士生导师,主要从事土和孔隙介质力学基本理论研究,土工结构稳定分析,土工试验测试技术与仪器研发.E-mail: shaolt@dlut.edu.cn.

  • 中图分类号: TU41

Effects of strain localization of triaxial samples in post-failure state

  • 摘要: 几乎所有土的本构关系模型研究都是以试验得到的土样的应力应变关系曲线为依据的.在此情况下,应力应变关系曲线反映的是土样整体的变形特征,土样被认为是单元体.在土的三轴试验中引入土样全表面变形场(局部变形)测量技术,通过测量在土样表面标定的特征点的变形过程,得到土样表面的局部变形特征.发现土样在发生剪切破坏后,剪切带内和带外的变形特点截然不同.根据剪切带的发生和发展情况,土样的变形可以分成破坏前,破坏和破坏后3个阶段,在不同阶段土样表现出不同的变形性质.在破坏前阶段,土样变形大体均匀,此时整体的应力应变曲线具有代表性;在破坏阶段,土样在某一点(或几个点)开始出现破坏并逐渐发展,最后形成贯穿的剪切带,观测到的变形是剪切带内和剪切带外的土体变形的综合结果;在破坏后阶段,荷载(应力)不再增加,剪切带外的上下两部分土体就像刚体一样变形不再增长,观测到的土样"变形"仅仅来自于土样沿着剪切带的滑动.此时不能根据土样沿剪切带的摩擦滑移直接定义土样应变.土样整体的应力应变关系曲线是土样作为结构体的响应,不是单元体的响应.据此认为:土的本构关系模型研究应该包括土体未发生破坏时的应力应变关系,破坏准则和破坏后沿剪切带的摩擦滑动性质,模型研究的重点在于破坏前阶段的应力应变关系的描述.所谓的临界状态其实是土样沿剪切带的类似于刚体滑动的状态.
    Abstract: Almost all the constitutive models for soils are established on the basis of the stress-strain relationship curve of soil samples. In this case, the stress-strain relationship curve reflects the deformation characteristics of a soil sample as a whole, in which the soil sample is considered as a representative element volume. In this paper, by adopting the deformation field (local deformation) over the entire surface of soil samples in triaxial tests, local deformation characteristics can be obtained by measuring the deformation process at the feature points over the surface of the soil samples. It is found that after the shear failure occurs the deformation feature in the shear band is quite different from that out of the shear band. According to the analysis of the occurrence and development of the shear band, the samples apparently exhibit three states during the tests, i.e., pre-failure, in-failure and post-failure, in correspondence to different deformation features. In the pre-failure state, the deformation of the entire sample is approximately uniform, and the global stress-strain curve is representative. In the failure state, failure occurs from a point (or some points) and develops gradually until the shear band cleaves the sample; in addition, the observed deformation for the entire sample may be the combination of deformations in the failure zones and non-failure zones. In the post-failure state, load (stress) does not continue to increase, and the deformation of the top and bottom blocks out of the shear band also does not continue to increase as a rigid body, and at the same time, the deformation is exclusively owing to the blocks of the sample sliding along the shear band. Therefore, it is not appropriate to define the strain of the sample to result from frictional sliding along the shear band. The stress-strain curve of the entire sample reveals structural response of soil, not an elementary response. So we think that the constitutive models for soils should include the stress-strain relationship of soils in the pre-failure state, failure criterion and frictional sliding characteristic along the shear band in post-failure state. The important point of establishing the constitutive model is how to describe the stress-strain relationship of soils in the pre-failure state. The so-called “critical state” is actually a rigid sliding state along the shear failure surface.
  • [1] DUNCAN J M, CHANG C Y. Nonlinear analysis of stress-strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96 (SM5): 1629-1653.
    [2] DUNCAN J M, BYRNE P, WONG K S, et al. Strength, stress-strain and bulk modulus parameters for finite element analysis of stresses and movements in soil masses[R]. Berkeley: University of California, 1978.
    [3] ROSCOE K H, SCHOFIELD A N, WORTH C P. On the yielding of soils[J]. Géotechnique, 1958, 8(1): 22-53.
    [4] ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13 (1): 211-240.
    [5] LADE P, DUNCAN J M. Elastoplastic stress - strain response: cohesive soils[J]. J Geotech Eng Div, 1975, 101(10): 1037-1053.
    [6] DAFALIAS Y F, HERRMANNL R. A bounding surface soil plasticity model[C]// Proc Int Symposium Soil under Cyclic and Transient Loading. Swansea, 1980.
    [7] 沈珠江. 土的三重屈服面应力应变模型[J]. 固体力学学报, 1984(2): 163-174. (SHEN Zhu-jiang. A Stress-strain model for soils with three yield surfaces[J]. Acta Mechanica Solida Sinica, 1984(2): 163-174. (in Chinese))
    [8] 龚晓南. 土塑性力学[M].杭州:浙江大学出版社, 1999. (GONG Xiao-nan. Soil plasticity mechanics[M]. Hangzhou: Zhejiang University Press, 1999. (in Chinese))
    [9] 黄文熙. 土的工程性质[M]. 北京: 水利电力出版社, 1983: 407-414. (HUANG Wen-xi. Engineering properties of soil[M]. Beijing: Water Resources and Electric Power Press, 1983: 407-414. (in Chinese))
    [10] GOTO S, TATSUOKA F. A simple gauge for local small strain measurement in the laboratory[J]. Soils and Foundations, 1991, 31(1): 169-180.
    [11] 邵龙潭. 土力学研究与探索[M]. 北京: 科学出版社, 2011. (SHAO Long-tan. Research and exploration in soil mechanics[M]. Beijing: Science Press, 2011. (in Chinese))
    [12] 程 丽. 三轴试样表面应变场测量的应用研究初步[D]. 大连: 大连理工大学, 2008. (CHENG Li. Preliminary application study on strain field measurement of triaxial specimen[D]. Dalian: Dalian University of Technology, 2008. (in Chinese))
    [13] 王助贫, 邵龙潭, 孙益振. 基于数字图像测量技术的粉煤灰三轴试样剪切带研究[J]. 岩土工程学报, 2006, 28(9): 1163-1167. (WANG Zhu-pin, SHAO Long-tan, SUN Yi-zhen. Study on shear band of fly ash triaxial specimen based on digital image processing technique[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1163-1167. (in Chinese))
    [14] 刘永禄. 数字图像测量技术在岩土工程试验中的应用研究[D]. 大连:大连理工大学, 2008. (LIU Yong-lu. Study on the application of digital image measure technique in geotechnical engineering[D]. Dalian: Dalian University of Technology. 2008. (in Chinese))
    [15] 鞠 鹏. 三轴土样变形数字图像测量误差修正和数据处理[D]. 大连: 大连理工大学, 2010. (JU Peng. The error correction and data processing of digital image processing method based on the tri-axial test[D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
    [16] 刘 潇. 三轴试验土样全表面变形测量方法及其应用[D]. 大连: 大连理工大学, 2012. (LIU Xiao. Method of whole surface deformation measurement for soil specimen in triaxial tests and its application[D]. Dalian: Dalian University of Technology, 2012. (in Chinese))
    [17] 邵龙潭, 刘 港, 薛 杰, 等. 基于三轴试验全表面数字图像测量技术的硅微粉剪切带研究[C]// 胡黎明, 梅国雄,吴志斌, 等. 第八届全国青年岩土力学与工程会议暨青年华人岩土工程论坛论文集. 武汉:武汉大学出版社, 2013: 129-135. (SHAO Long-tan, LIU Gang, XUE Jie, et al. Study on the shear zone of silica micropowder by triaxial test with digital image method for deformation measurement of the whole surface of specimen[C]// HU Li-ming, MEI Guo-xiong, WU Zhi-bin, et al, eds. Proc of the 8th Chinese Youth Forum and Conference on Geotechnical Engineering Conference. Wuhan: Wuhan University Press, 2013: 129-135. (in Chinese))
    [18] 徐 辉, 王靖涛, 卫 军. 基于颗粒滑动分析的砂土损伤本构模型[J]. 岩石力学与工程学报, 2007(增刊2): 4367-4371. (XU Hui, WANG Jing-tao, WEI Jun. A damage constitutive model for sandy soil based on analysis of grain sliding[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2): 4367-4371. (in Chinese))
    [19] 徐 辉, 张光永, 王靖涛. 砂土的应力路径损伤本构模型[J]. 重庆建筑大学学报, 2008, 30(4): 121-124. (XU Hui, ZHANG Guang-yong, WANG Jing-tao. A stress path damage constitutive model for sang[J]. Journal of Chongqing Jianzhu University, 2008, 30(4): 121-124. (in Chinese))
    [20] 原大宁, 刘丽兰, 刘宏昭, 等. 滑动摩擦模型研究现状[J].系统仿真学报, 2009, 21(4): 1142-1147. (YUAN Da-ning, LIU Li-lan, LIU Hong-zhao, et al. Progress of pre-sliding friction model[J]. Journal of System Simulation, 2009, 21(4): 1142-1147. (in Chinese))
    [21] 徐 辉, 韩青锋, 连晓伟, 等. 黏性土固结不排水剪切的滑动损伤模型研究[J]. 岩土力学, 2008, 29(9): 2383-2386. (XU Hui, HAN Qing-feng, LIAN Xiao-wei, et al. A damage constitutive model for clay based on the analysis of sliding of skeleton grains[J]. Rock and Soil Mechanics, 2008, 29(9): 2383-2386. (in Chinese))
    [22] 周葆春, 王靖涛. 论土体应力应变关系曲线类型和临界状态[J].重庆建筑大学学报, 2008, 30(1): 63-67. (ZHOU Bao-chun, WANG Jing-tao. On the type of stress-strain relation curves and the critical state for soils[J]. Journal of Chongqing Jiangzhu University, 2008, 30(1): 63-67. (in Chinese))
    [23] 李 蓓, 赵锡宏, 董建国. 上海黏性土剪切带倾角的试验研究[J]. 岩土力学, 2002, 23(4): 423-427. (LI Pei, ZHAO Xi-hong, DONG Jian-guo. Experimental study on shear band inclination in Shanghai clay[J]. Rock and Soil Mechanics, 2002, 23(4): 423-427. (in Chinese))
    [24] 赵成刚, 白 冰, 等. 土力学原理[M]. 北京: 清华大学出版社, 2009. (ZHAO Cheng-gang, BAI Bing. Fundamentals of soil mechanics[M]. Beijing: Tsinghua University Press, 2009. (in Chinese))
  • 期刊类型引用(1)

    1. 冯义,陈育民. 基于透明土的盾构隧道突水涌砂灾变发展试验研究. 隧道建设(中英文). 2023(01): 75-81 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  464
  • HTML全文浏览量:  1
  • PDF下载量:  602
  • 被引次数: 12
出版历程
  • 收稿日期:  2015-01-28
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回