• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

大变形锚杆支护效应分析

吴学震, 蒋宇静, 王刚, 李博, 王健华, 王春光

吴学震, 蒋宇静, 王刚, 李博, 王健华, 王春光. 大变形锚杆支护效应分析[J]. 岩土工程学报, 2016, 38(2): 245-252. DOI: 10.11779/CJGE201602007
引用本文: 吴学震, 蒋宇静, 王刚, 李博, 王健华, 王春光. 大变形锚杆支护效应分析[J]. 岩土工程学报, 2016, 38(2): 245-252. DOI: 10.11779/CJGE201602007
WU Xue-zhen, JIANG Yu-jing, WANG Gang, LI Bo, WANG Jian-hua, WANG Chun-guang. Reinforcement effect of yielding bolts[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 245-252. DOI: 10.11779/CJGE201602007
Citation: WU Xue-zhen, JIANG Yu-jing, WANG Gang, LI Bo, WANG Jian-hua, WANG Chun-guang. Reinforcement effect of yielding bolts[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 245-252. DOI: 10.11779/CJGE201602007

大变形锚杆支护效应分析  English Version

基金项目: 国家自然科学基金项目(51279097,51379117,51479108)
详细信息
    作者简介:

    吴学震(1988- ),男,博士研究生,主要从事深部岩石力学与工程等方面研究。E-mail: sdkdwxz@gmail.com。

    通讯作者:

    王刚

Reinforcement effect of yielding bolts

  • 摘要: 根据大变形锚杆的力学和变形特性,建立大变形锚杆-围岩相互作用结构模型,研究锚杆加固圆形隧道时的支护效应,并通过数值模拟验证了模型和求解方法的有效性。采用上述求解方法,定量分析了原岩应力、岩体强度以及大变形锚杆安装密度、长度和安装时间对其支护效果的影响规律。结果表明,在高应力或极软岩等恶劣地质条件下,围岩产生较大位移的情况下,大变形锚杆可以更好的发挥支护效应。大变形锚杆加固的主要作用在于限制塑性区围岩的变形,对塑性区边界的位置以及弹性区岩体变形的控制效果不明显。还通过改变安装锚杆时等效内支撑力的大小,揭示了锚杆安装时间对其支护效应的影响规律。研究结果可为大变形锚杆支护设计及参数优化提供基础理论依据。
    Abstract: According to the mechanical behaviors and deformation characteristics of yielding bolts, a coupling model is proposed to account for the interaction between the bolt and the rock mass. An analytical solution for the coupling model applied in a circular tunnel is achieved. The reinforcement mechanism of the yielding bolts is demonstrated through an illustrative case study and verified by numerical simulations. Based on the proposed model, the influences of different parameters, including stress condition of rock mass, strength of rock mass, density of bolts, length and installing time of bolts the, on reinforcement effect are estimated quantitatively. The parameter studies show that the performance of the yielding bolts is better in the case of large rock deformation. The yielding bolts can reduce the deformation of plastic zone significantly, while the control effect in the elastic zone is not very obvious. The influences of reinforcing time are studied by changing the artificial inner stress when the bolts are installed. The results may provide a necessary theoretical basis for the design and parameter optimization of yielding bolts.
  • [1] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813. (HE Man-chao, XIE He-ping, PENG Su-ping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. (in Chinese))
    [2] 徐林生, 王兰生. 二郎山公路隧道岩爆发生规律与岩爆预测研究[J]. 岩土工程学报, 1999, 21(5): 569-572. (XU Lin-sheng, WANG Lan-sheng. Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain road[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 569-572. (in Chinese))
    [3] JAGER A J. Two new support units for the control of rockburst damage[J]. Rock Support in Mining and Underground Construction, 1992: 621-631.
    [4] OZBAY U, NEUGEBAUER E. In-situ pull testing of a yieldable rock bolt, Roofex[J]. Controlling Seismic Hazard and Sustainable Development of Deep Mines, 2009: 1081-1090.
    [5] ANSELL A. Laboratory testing of a new type of energy absorbing rock bolt[J]. Tunnelling and Underground Space Technology, 2005, 20: 291-300.
    [6] LI C C. A new energy-absorbing bolt for rock support in high stress rock masses[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47: 396-404.
    [7] WANG Gang, WU Xue-zhen, JIANG Yu-jing, et al. Quasi-static laboratory testing of a new rock bolt for energy-absorbing applications[J]. Tunnelling and Underground Space Technology, 2013, 38: 122-128.
    [8] 王 飞, 刘洪涛, 张胜凯, 等. 高应力软岩巷道可接长锚杆让压支护技术[J]. 岩土工程学报, 2014, 36(9): 1666-1673. (WANG Fei, LIU Hong-tao, ZHANG Sheng-kai, et al. Lengthened bolt yieldable technology in high stress soft rock roadway[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1666-1673. (in Chinese))
    [9] 连传杰, 王 阁. 预应力让压锚杆设计参数对深埋巷道稳定性影响分析[J]. 岩土工程学报, 2013, 35(增刊2): 452-458. (LIAN Chuan-jie, WANG Ge. Influence of design parameters of prestressed yieldable bolts on stability of deep mine roadway[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 452-458. (in Chinese))
    [10] CAI Y, ESAKI T, JIANG Y. An analytical model to predict axial load in grouted rock bolt for soft rock tunnelling[J]. Tunnelling and Underground Space Technology, 2004, 19(6): 607-618.
    [11] 张季如, 唐保付. 锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报, 2002, 22(2): 188-192. (ZHANG Ji-ru, TANG Bao-fu. Hyperbolic function model to analyze load transfer mechanism on bolts[J]. Chinese Journal of Geotechnical Engineering, 2002, 22(2): 188-192. (in Chinese))
    [12] 王 刚, 刘传正, 吴学震. 端锚式锚杆-围岩耦合流变模型研究[J]. 岩土工程学报, 2014, 36(2): 363-375. (WANG Gang, LIU Chuan-zheng, WU Xue-zhen. Coupling rheological model for end-anchored bolt and surrounding rock mass[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 363-375. (in Chinese))
    [13] 徐立功, 李 浩, 陈祥林, 等. 锚杆参数对围岩稳定性影响的数值分析[J]. 岩土工程学报, 2010, 32(增刊2): 249-252. (XU Li-gong, LI Hao, CHEN Xiang-lin, et al. Numerical analysis on the impact of rock bolt parameters on stability of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 249-252. (in Chinese))
    [14] LI C C. Performance of d-bolts under static loading[J]. Rock Mechanics and Rock Engineering, 2012, 45(2): 183-192.
    [15] 吴学震, 王 刚, 蒋宇静, 等. 拉压耦合大变形锚杆作用机理及其实验研究[J]. 岩土工程学报, 2015, 37(1): 139-147. WU Xue-zhen, WANG Gang, JIANG Yu-jing, et al. Mechanism of and experimental research on CTC-yield bolts[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 139-147. (in Chinese))
    [16] 王 刚, 吴学震, 蒋宇静, 等. 大变形锚杆-围岩耦合模型及计算方法[J]. 岩土力学, 2014, 35(3): 887-895. (WANG Gang, WU Xue-zhen, JIANG Yu-jing, et al. Coupling model and calculation method of yielding bolt and rockmass[J]. Rock and Soil Mechanics, 2014, 35(3): 887-895. (in Chinese))
    [17] CARRANZA-TORRES C, FAIRHURST C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the hoek-brown failure criterion[J]. Tunnelling and Underground Space Technology, 2000, 15(2): 187-213.
    [18] GUAN Z, JIANG Y, TANABASHI Y. Ground reaction analyses in conventional tunnelling excavation[J]. Tunnelling and Underground Space Technology, 2007, 22(2): 230-237.
    [19] ITASCA Consulting Group. FLAC 3D , fast Lagrange analysis of continua in 3 dimensions, version 2.0, user manual. Itasca inc[S]. 1997.
    [20] CARRANZA-TORRES C, FAIRHURST C. The elasto- plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics & Mining Sciences, 1999, 36(6): 777-809.
    [21] LI C C. Field observations of rock bolts in high stress rock masses[J]. Rock Mech Rock Eng, 2010, 43: 491-496.
    [22] FARMER I W. Stress distribution along a resin grouted rock anchor[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1975, 12(11): 347-351.
    [23] 林 杭, 曹 平. 锚杆长度对边坡稳定性影响的数值分析[J]. 岩土工程学报, 2009, 31(3): 470-474. (LIN Hang, CAO Ping. Numerical analysis for effect of bolt length on stability of slopes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 470-474. (in Chinese))
计量
  • 文章访问数:  505
  • HTML全文浏览量:  3
  • PDF下载量:  494
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-15
  • 发布日期:  2016-02-24

目录

    /

    返回文章
    返回