• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土小应变动力特性弯曲-伸缩元联合测试试验研究

孙奇, 董全杨, 蔡袁强, 王军, 胡秀青, 蔡瑛

孙奇, 董全杨, 蔡袁强, 王军, 胡秀青, 蔡瑛. 砂土小应变动力特性弯曲-伸缩元联合测试试验研究[J]. 岩土工程学报, 2016, 38(1): 100-108. DOI: 10.11779/CJGE201601010
引用本文: 孙奇, 董全杨, 蔡袁强, 王军, 胡秀青, 蔡瑛. 砂土小应变动力特性弯曲-伸缩元联合测试试验研究[J]. 岩土工程学报, 2016, 38(1): 100-108. DOI: 10.11779/CJGE201601010
SUN Qi, DONG Quan-yang, CAI Yuan-qiang, WANG Jun, HU Xiu-qing, CAI Ying. Laboratory study on small-strain dynamic properties of sand by bender-extender element[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 100-108. DOI: 10.11779/CJGE201601010
Citation: SUN Qi, DONG Quan-yang, CAI Yuan-qiang, WANG Jun, HU Xiu-qing, CAI Ying. Laboratory study on small-strain dynamic properties of sand by bender-extender element[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 100-108. DOI: 10.11779/CJGE201601010

砂土小应变动力特性弯曲-伸缩元联合测试试验研究  English Version

基金项目: 国家自然科学基金项目(51278383,51238009,51478364,51508417); 浙江省重点科技创新团队项目(2011R50020); 温州市重点科技创新团队项目(C20120006)
详细信息
    作者简介:

    孙 奇(1988- ),女,博士,讲师,主要从事土动力学及砂土本构理论等方面的研究。

Laboratory study on small-strain dynamic properties of sand by bender-extender element

  • 摘要: 近年来弯曲元在小应变动力特性测试中得到了广泛应用,但对弯曲-伸缩元的联合测试研究较少,国内对弯曲-伸缩元联合测试的研究几近空白。采用弯曲-伸缩元对福建砂进行了剪切波和压缩波联合测试,通过更宽区段激发频率和不同分析方法对剪切波速和压缩波速的确定进行了系统分析,得到了可靠的剪切波和压缩波传播时间确定方法。采用10~20 kHz峰值法和互相关法可较方便准确地确定剪切波传播时间;压缩波初始到达较易判断,激发频率对压缩波速影响较小。利用弯曲-伸缩元联合测试得到剪切模量G0和侧限模量M0,试验结果表明围压和孔隙比对G0的影响程度均较对M0的影响程度大。通过剪切波速和压缩波速可计算得到泊松比,随密实度和围压的增大泊松比均以线性规律减小。为弯曲-伸缩元的进一步应用提供了有效的方法。
    Abstract: Measurements of small-strain dynamic properties by bender elements are popular in recent years. However, the study of bender-extender elements is less mentioned, and their application in China has rarely been reported. In this study, the S-wave and P-wave velocities of Fujian sand are simultaneously measured by a single pair of bender-extender elements. In order to find the travel time for S-wave and P-wave, wider excitation frequencies and different methods are used, and reliable methods for the determination of the S-wave and P-wave velocities are obtained. The test results show that the peak-peak method and the cross-correlation method using 10~20 kHz excitation frequencies are exact and convenient. The small-strain properties, including shear modulus G0, constrained modulus M0 and Poisson's ratio υ, are determined for specimens by measuring the S-wave and P-wave velocities. G0 increases faster than M0 as the soil density and confining pressure increase. The Poisson's ratio decreases linearly with the increasing soil density and confining pressure. The results of this study provide effective methods for the further application of bender-extender elements.
  • [1] SHIRLEY D J, HAMPTON L D. Shear-wave measurements in laboratory sediments[J]. The Journal of the Acoustical Society of America, 1978, 63(2): 607-613.
    [2] 柏立懂, 项 伟, SAVIDIS A Stavros, 等. 干砂最大剪切模量的共振柱与弯曲元试验[J]. 岩土工程学报, 2012, 34(1): 184-188. (BAI Li-dong, XIANG Wei, SAVIDIS A Stavros, et al. Resonant column and bender element tests on maximum shear modulus of dry sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 184-188. (in Chinese))
    [3] LEE J S, SANTAMARINA J C. Bender elements: performance and signal interpretation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(9): 1063-1070.
    [4] LEONG E C, YEO S H, RAHARDJO H. Measuring shear wave velocity using bender elements[J]. Geotechnical Testing Journal, 2005, 28(5): 488-498.
    [5] 谷 川, 蔡袁强, 王 军, 等. 循环应力历史对饱和软黏土小应变剪切模量的影响[J]. 岩土工程学报, 2012, 34(9): 1654-1660. (GU Chuan, CAI Yuan-qiang, WANG Jun, et al. Effects of loading history on small-strain shear modulus of saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1654-1660. (in Chinese))
    [6] 陈云敏, 周燕国, 黄 博. 利用弯曲元测试砂土剪切模量的国际平行试验[J]. 岩土工程学报, 2006, 28(7): 874-880. (CHEN Yun-min, ZHOU Yan-guo, HUANG Bo. International parallel test on the measurement of shear modulus of sand using bender elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 874-880. (in Chinese))
    [7] VIGGIANI G, ATKINSON J H. Interpretation of bender element tests[J]. Géotechnique, 1995, 45(1): 149-154.
    [8] 吴宏伟, 李 青, 刘国彬. 利用弯曲元测量上海原状软黏土各向异性剪切模量的试验研究[J]. 岩土工程学报, 2013, 35(1): 150-156. (NG C W W, LI Qing, LIU Guo-bin. Measurements of small-strain inherent stiffness anisotropy of intact Shanghai soft clay using bender elements[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1):: 150-156. (in Chinese))
    [9] YOUN J U, CHOO Y W, KIM D S. Measurement of small-strain shear modulus G max of dry and saturated sands by bender element, resonant column, and torsional shear tests[J]. Canadian Geotechnical Journal, 2008, 45(10): 1426-1438.
    [10] 董全杨, 蔡袁强, 徐长节, 等. 干砂饱和砂小应变剪切模量共振柱弯曲元对比试验研究[J]. 岩土工程学报, 2013, 35(12): 2283-2289. (DONG Quan-yang, CAI Yuan-qiang, XU Chang-jie, et al. Measurement of small-strain shear modulus G max of dry and saturated sands by bender element and resonant column tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2283-2289. (in Chinese))
    [11] SCHULTHEISS P J. Simultaneous measurements of P and S wave velocities during conventional laboratory soil testing procedures[J]. Mar Geotech, 1981, 4(4): 343-367.
    [12] BATES C R. Dynamic soil property measurements during triaxial testing[J]. Géotechnique, 1989, 39(4): 721-726.
    [13] NAKAGAWA K, SOGA K, MITCHELL J K. Pulse transmission system for measuring wave propagation in soils[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(4): 302-308.
    [14] BRIGNOLI E G M, GOTTI M, STOKOE K H II. Measurement of shear waves in laboratory specimens by means of piezo-electric transducers[J]. Geotechnical Testing Journal, 1996, 19(4): 384-397.
    [15] LINGS M L, GREENING P D. A novel bender/extender element for soil testing[J]. Géotechnique, 2001, 51(8): 713-717.
    [16] LEONG E C, CAHYADI J, RAHARDJO H. Measuring shear and compression wave velocities of soil using bender-extender elements[J]. Canadian Geotechnical Journal, 2009, 46(7): 792-812.
    [17] 姬美秀, 陈云敏, 黄 博. 弯曲元试验高精度测试土样剪切波速方法[J]. 岩土工程学报, 2003, 25(6): 732-736. (JI Mei-xiu, CHEN Yun-min, HUANG Bo. Method for precisely determining shear wave velocity of soil from bender element tests[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6): 732-736. (in Chinese))
    [18] JOVICIC V, COOP M R, SIMIC M. Objective criteria for determining Gmax from bender element tests[J]. Géotechnique, 1996, 46(2): 357-362.
    [19] YANG J, GU X Q. Shear stiffness of granular material at small strains: does it depend on grain size[J]. Géotechnique, 2013, 63(2): 165-179.
    [20] GU X Q, YANG J, HUANG M S. Laboratory measurements of small strain properties of dry sands by bender element[J]. Soils and Foundations, 2013, 53(5): 735-745.
    [21] SANCHES-SALINERO I. Analytical investigation of seismic methods used for engineering application[D]. Austin: The University of Texas at Austin, 1987.
    [22] ARULNATHAN R, BOULANGER R W, RIEMER M F. Analysis of bender element tests[J]. Geotechnical Testing Journal, 1998, 21(2): 120-131.
    [23] ARROYO M, WOOD D M, GREENING P D. Source near-field effects and pulse tests in soil samples[J]. Géotechnique, 2003, 53(3): 337-345.
    [24] LO PRESTI D C F, JAMIOLKOWSKI M, PALLARA O, et al. Shear modulus and damping of soils[J]. Géotechnique, 1997, 47(3): 603-617.
    [25] HARDIN B O, RICHART JR F E. Elastic wave velocities in granular soils[J]. Journal of Soil Mechanics and Foundations Division, 1963, 89(SM1): 39-56.
    [26] KUMAR J, MADHUSUDHAN B N. Effect of relative density and confining pressure on Poisson ratio from bender-extender element tests[J]. Géotechnique, 2010, 60(7): 561-567.
计量
  • 文章访问数:  380
  • HTML全文浏览量:  4
  • PDF下载量:  357
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-29
  • 发布日期:  2016-01-19

目录

    /

    返回文章
    返回