一维固结理论一般解与固结沉降过程简便计算
General solution to one-dimentional consolidation theories and simple computation method for consolidation settlement
-
摘要: 对代表目前研究水平的几个主要固结理论解析解进行了分析研究,结果表明,线性、非线性、大变形、次固结流变等条件下的固结理论解析解可用一个一般解形式来表示,而一般解的形式与经典Terzaghi固结理论解相同,只需用变量Dv(t)代替Terzaghi常数固结系数Cv。研究表明,不同的Dv(t)形式反映了固结模型中的不同假定,通过拟合试验得到的Dv(t)可以综合反映非线性、大变形与次固结等影响因素。在此基础上,建议了一个简便的固结变形时间过程计算方法。建议方法无须另行复杂的参数试验,方法简单实用,与试验结果吻合很好。Abstract: Several representative analytic solutions to the consolidation theories are analyzed. The results show that there is a general solution which can be used for linearity, nonlinearity, large deformation and secondary consolidation analysis. The general solution is the same as the Terzaghi consolidation theory in form, and only the variable Dv(t) is used to replace the consolidation coefficient Cv. Different forms of Dv(t) reflect different assumptions in the consolidation theories. A simple method to compute the process of the consolidation settlement is suggested, and the results by the proposed method are in good agreement with the experimental ones.