• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

膨润土系隔离墙材料渗透特性研究综述

杨玉玲, 杜延军, 范日东, 魏明俐

杨玉玲, 杜延军, 范日东, 魏明俐. 膨润土系隔离墙材料渗透特性研究综述[J]. 岩土工程学报, 2015, 37(zk2): 210-216. DOI: 10.11779/CJGE2015S2040
引用本文: 杨玉玲, 杜延军, 范日东, 魏明俐. 膨润土系隔离墙材料渗透特性研究综述[J]. 岩土工程学报, 2015, 37(zk2): 210-216. DOI: 10.11779/CJGE2015S2040
YANG Yu-ling, DU Yan-jun, FAN Ri-dong, WEI Ming-li. Advances in permeability for bentonite-based hydraulic containment barriers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 210-216. DOI: 10.11779/CJGE2015S2040
Citation: YANG Yu-ling, DU Yan-jun, FAN Ri-dong, WEI Ming-li. Advances in permeability for bentonite-based hydraulic containment barriers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 210-216. DOI: 10.11779/CJGE2015S2040

膨润土系隔离墙材料渗透特性研究综述  English Version

基金项目: 国家自然科学基金项目(51278100); 江苏省自然科学基金; 项目(BK2012022)
详细信息
    作者简介:

    杨玉玲(1986- ),女,广西贵港人,博士研究生,主要从事环境岩土方面的研究。

Advances in permeability for bentonite-based hydraulic containment barriers

  • 摘要: 渗透特性是隔离墙材料的主要工程特征之一。根据大量文献中有关隔离墙材料渗透特性的相关报道,对比介绍了隔离墙材料渗透系数室内测试技术,总结分析了材料特性和化学溶液特性对渗透系数的影响规律。结果表明:渗透试验终止条件的合理选择对正确评价隔离墙材料长期渗透特性起决定性作用;级配较好的原位土可使材料渗透系数降低;渗透系数随膨润土掺量和双电层厚度增加而减小;溶液阳离子价数和离子浓度升高、溶液介电常数降低均可使渗透系数产生不同程度增大;膨润土预水化作用和离子水化半径对材料渗透特性的影响机制尚不完全明确。建议深入研究典型污染物和复合污染物与隔离墙材料间的相互作用,积极推广低质量膨润土及其改性土在中国隔离墙技术中的应用。
    Abstract: Permeability is one of the most important engineering properties of the barriers. The permeability of the barriers is overviewed based on literature studies. The performances of various laboratory test methods are compared, and the effects of properties of barrier materials as well as chemical solution conditions on hydraulic conductivity of the barriers are summarized. The results show that the accuracy of long-term performance evaluation of the barriers depends on proper selection of the test termination criteria. Well graded in-situ soil benefits the permeability resistance of the barriers. The hydraulic conductivity generally increases with the decrease in bentonite content in the barriers, in thickness of decreases electrical double layer of the bentonite, increases in cation valence and cation concentration, and/or decreases in dielectric constant of the chemical solution. The influence mechanism of prehydration of the bentonite and hydrated ionic radius on the permeability of the barriers is not fully clear. Finally, it is suggested that further researches on interaction between bentonite-based barrier and typical contaminant or multiple contaminant should be conducted, and applications of low-quality bentonite and/or its amended product should be promoted in China.
  • [1] 陈云敏, 施建勇, 朱 伟, 等. 环境岩土工程研究综述[J]. 土木工程学报, 2012, 45(4): 165-182. (CHEN Yun-min, SHI Jian-yong, ZHU Wei, et al. A review of geoenvironmental engineering[J]. China Civil Engineering Journal, 2012, 45(4): 165-182. (in Chinese))
    [2] 杜延军, 金 飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124. (DU Yan-jun, JIN Fei, LIU Song-yu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 2011, 32(1): 116-124. (in Chinese))
    [3] SHARMA H D, REDDY K R. Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies[M]. New Jersey: John Wiley & Sons, Inc., 2004.
    [4] 杨玉玲, 杜延军, 范日东, 等. 分散剂改良土-膨润土竖向隔离墙材料黏度试验研究[J]. 东南大学学报(自然科学版), 2014, 44(3): 650-654. (YANG Yu-ling, DU Yan-jun, FAN Ri-dong, et al. Experimental study on viscosity of soil-bentonite vertical cut-off wall backfills amended with dispersant[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(3): 650-654.( in Chinese))
    [5] JO H Y, KATSUMI T, BENSON C H, et al. Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(7): 557-567.
    [6] JO H Y, BENSON C H, SHACKELFORD C D, et al. Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(4): 405-417.
    [7] SHACKELFORD C D, SAMPLE-LORD K M. Hydraulic conductivity and compatibility of bentonite for hydraulic containment barriers[C]// Soil Behavior Fundamentals to Innovations in Geotechnical Engineering. Olson: ASCE, 2014.
    [8] KENNEY T C, VEEN W A V, SWALLOW M A, et al. Hydraulic conductivity of compacted bentonite-sand mixtures[J]. Canadian Geotechnical Journal, 1992, 29(3): 364-374.
    [9] BOWDERS JR J J, DANIEL D E. Hydraulic conductivity of compacted clay to dilute organic chemicals[J]. Journal of Geotechnical Gngineering, 1987, 113(12): 1432-1448.
    [10] EVANS J C. Hydraulic conductivity of vertical cutoff walls[J]. ASTM Special Technical Publication, 1994, 1142: 79-94.
    [11] HONG C S, SHACKELFORD C D, MALUSIS M A. Consolidation and hydraulic conductivity of zeolite-amended soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 15-25.
    [12] BOWDERS JR J J. Discussion of “Termination criteria for clay permeability testing[J]. Journal of Geotechnical Engineering, 1988, 114(8): 947-949.
    [13] MALUSIS M A, MCKEEHAN M D. Chemical compatibility of model soil-bentonite backfill containing multiswellable bentonite[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 189-198.
    [14] D’APPOLONIA D J. Soil-bentonite slurry trench cutoffs[J]. Journal of the Geotechnical Engineering Division, 1980, 106(4): 399-417.
    [15] LEE J M, SHACKELFORD C D. Impact of bentonite quality on hydraulic conductivity of geosynthetic clay liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(1): 64-77.
    [16] GLEASON M H, DANIEL D E, EYKHOLT G R. Calcium and sodium bentonite for hydraulic containment applications[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(5): 438-445.
    [17] BARVENIK M J. Design options using vertical barriers systems[C]// International Convention and Exposition, Environmental Geotechnical Symposium. New York: ASCE, 1992.
    [18] FAN R D, DU Y J, REDDY K R, et al. Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill: Initial assessment[J]. Applied Clay Science, 2014, 101: 119-127.
    [19] MITCHELL J, SOGA K. Fundamentals of soil behavior[M]. Hoboken: John Wiley and Sons, Inc., 2005.
    [20] SHACKELFORD C D, BENSON C H, KATSUMI T, et al. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids[J]. Geotextiles and Geomembranes, 2000, 18(2): 133-161.
    [21] RAO S N, MATHEW P K. Effects of exchangeable cations on hydraulic conductivity of a marine clay[J]. Clays and Clay Minerals, 1995, 43(4): 433-437.
    [22] PETROV R J, ROWE R K. Geosynthetic clay liner (GCL)-chemical compatibility by hydraulic conductivity testing and factors impacting its performance[J]. Canadian Geotechnical Journal, 1997, 34(6): 863-885.
    [23] DANIEL D E, SHAN H Y, ANDERSON J D. Effects of partial wetting on the performance of the bentonite component of a geosynthetic clay liner[C]// Proceedings of Geosynthetics. Minnesota, 1993: 1483-1496.
    [24] KATSUMI T, ISHIMORI H, ONIKATA M, et al. Long-term barrier performance of modified bentonite materials against sodium and calcium permeant solutions[J]. Geotextiles and Geomembranes, 2008, 26(1): 14-30.
    [25] FERNANDEZ F, QUIGLEY R M. Viscosity and dielectric constant controls on the hydraulic conductivity of clayey soils permeated with water-soluble organics[J]. Canadian Geotechnical Journal, 1988, 25(3): 582-589.
    [26] PETROV R J, ROWE R K, QUIGLEY R M. Selected factors influencing GCL hydraulic conductivity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(8): 683-695.
    [27] FERNANDEZ F, QUIGLEY R M. Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons[J]. Canadian Geotechnical Journal, 1985, 22(2): 205-214.
    [28] OLPHEN H. An introduction to clay colloid chemistry, for clay technologists, geologists, and soil scientists[M]. 2nd ed. New York: Wiley, 1977.
    [29] 徐 超, 李志斌, 高彦斌. 溶液特征对GCL膨胀和渗透特性的影响[J]. 同济大学学报(自然科学版), 2009, 37(1): 36-40, 46. (XU Chao, LI Zhi-bin, GAO Yan-bin. Influence of solution characteristics on swelling and hydraulic performance of geosynthetic clay liner[J]. Journal of Tongji University(Natural Science), 2009, 37(1): 36-40, 46. (in Chinese))
    [30] SCALIA IV J, BENSON C H, BOHNHOFF G L, et al. Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(3): 1-13.
    [31] RUHL J L, DANIEL D E. Geosynthetic clay liners permeated with chemical solutions and leachates[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(4): 369-381.
计量
  • 文章访问数:  408
  • HTML全文浏览量:  16
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-25
  • 发布日期:  2015-07-24

目录

    /

    返回文章
    返回