• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于大变形有限元的CPTU尺寸效应与贯入速率研究

耿功巧, 蔡国军, 段伟宏, 邹海峰, 刘松玉

耿功巧, 蔡国军, 段伟宏, 邹海峰, 刘松玉. 基于大变形有限元的CPTU尺寸效应与贯入速率研究[J]. 岩土工程学报, 2015, 37(zk1): 89-93. DOI: 10.11779/CJGE2015S1018
引用本文: 耿功巧, 蔡国军, 段伟宏, 邹海峰, 刘松玉. 基于大变形有限元的CPTU尺寸效应与贯入速率研究[J]. 岩土工程学报, 2015, 37(zk1): 89-93. DOI: 10.11779/CJGE2015S1018
GENG Gong-qiao, CAI Guo-jun, DUAN Wei-hong, ZOU Hai-feng, LIU Song-yu. Size effect and penetration rate of CPTU based on ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 89-93. DOI: 10.11779/CJGE2015S1018
Citation: GENG Gong-qiao, CAI Guo-jun, DUAN Wei-hong, ZOU Hai-feng, LIU Song-yu. Size effect and penetration rate of CPTU based on ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 89-93. DOI: 10.11779/CJGE2015S1018

基于大变形有限元的CPTU尺寸效应与贯入速率研究  English Version

基金项目: 国家自然科学基金项目(41202203); 国家“十二五”科技支撑计划资助项目(2012BAJ01B02); 全国优秀博士学位论文作者专项资金资助项目(201353); 江苏省杰出青年基金项目(BK20140027); 教育部新世纪优秀人才支持计划(NCET-13-0118); 中央高校基本科研业务费资助项目(2242013R30014)
详细信息
    作者简介:

    耿功巧(1990- ),男,江苏南京人,硕士研究生,主要从事土工原位测试等方面的研究。

Size effect and penetration rate of CPTU based on ABAQUS

  • 摘要: 孔压静力触探(CPTU)技术是目前运用最为广泛的原位测试方法之一,但其贯入机理的研究尚未成熟,实测结果分析往往通过经验公式进行推算,准确性不够。通过ABAQUS数值模拟软件对探头在黏土中的贯入进行有限元模拟,分别取半径为0.9,1.8,3.6,4.8 cm的探头对尺寸效应展开研究,同时分别以0.1,1,2,3,4 cm/s的贯入速率进行贯入,进而就贯入速率对贯入阻力的影响进行探讨。研究表明:随着探头尺寸的增加,锥尖与探杆区域附近的塑性区面积都增加,锥尖阻力会发生一定程度的降低,贯入应力影响的最大归一化水平距离也相应减小。不考虑超孔压影响的情况下,随着贯入速率的增加,稳定状态下的锥尖阻力基本不变,但贯入越容易达到稳定状态。
    Abstract: The piezocone penetration test is one of the most widely used in-situ tests, but the research on the penetration mechanism has not been mature, which results in that empirical equations are always used to assess the behavior of soils with less accuracy. The ABAQUS is used to simulate the penetration process of the cone. The radius of cone is valued as 0.9, 1.8, 3.8 and 4.8 cm respectively to study the “size effect”. The rate of penetration is valued as 0.1, 1, 2, 3 and 4 cm/s to investigate its effect on the cone tip resistance. It is summarized that as the cone radius increases, the plastic zone area around the shaft and cone expands, the cone tip resistance decreases, and the maximum normalized horizontal affected distance decreases. Meanwhile, the steady-state cone resistance keeps constant with the increase of penetration rate without considering the excess pore pressure, but the steady-state condition is more easily reached.
  • [1] 刘松玉, 蔡国军, 童立元. 现代多功能CPTU技术理论与工程应用[M]. 北京: 科学出版社, 2013. (LIU Song-yu, CAI Guo-jun, TONG Li-yuan. The theory and engineering application of digital multifunctional piezocone penetration test (CPTU) [M]. Beijing: Science Press, 2013. (in Chinese))
    [2] 蔡国军, 刘松玉, 童立元, 等. 现代数字式多功CPTU与中国CPT对比试验研究[J]. 岩石力学与工程学报, 2009, 28(5): 914-928. (CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Study on the comparison of digital multifunctional piezocone penetration test (CPTU) with Chinese CPT[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 914-928. (in Chinese))
    [3] 蔡国军, 刘松玉, 童立元, 等. 基于聚类分析理论的CPTU土分类方法研究[J]. 岩土工程学报, 2009, 31(3): 416-424. (CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Soil classification using CPTU data based upon cluster analysis theory[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 416-424. (in Chinese))
    [4] MEYERHOF G G. The ultimate bearing capacity of wedge-shaped of foundation[C]// Proc 5th International Conference on Soil Mechanics and Foundations. Paris, 1961: 103-109.
    [5] JANBU N, SENNESET K. Effective stress interpretation of in situ static penetration tests[C]// Proceedings of the 1st European Symposium on Penetration Testing. Stockholm, 1974: 181-93.
    [6] DURGUNOGLU H T, MITCHELL J K. Static penetration resistance of soils. I-II[C]// Proceedings of the ASCE Spec Conference on In Situ Measurement of Soil Properties. New York, 1975: 51-89.
    [7] VESIC A S. Expansion of cavities in infinite soil mass[J]. J Soil Mech Found Div, ASCE, 1972, 98: 265-290.
    [8] BALIGH M M. Cavity expansion in sands with curved envelops[J]. Journal of the Geotechnical Engineering Division, 1976, 11: 1131-1146.
    [9] BALIGH M M. Strain path method[J]. J Soil Mech Found Div, ASCE, 1985, 111(9): 1108-1136.
    [10] ROBERTSON P K, CAMPANELLA R G. Interpretation of cone penetration tests: sands[J]. Canadian Geotechnical Journal, 1983, 20(4): 719-733.
    [11] KERISEL J. Foundations profondes[J]. Ann.ITBTP, 1962, 179(3): 32-43.
    [12] DE Borst R, VERMEER P A. Finite element analysis of static penetration tests[J]. Géotechnique, 1984, 34(2): 199-210.
    [13] LU Q, RANDOLPH M F, HU Y, et al. A numerical study of cone penetration in clay[J]. Geótechnique, 2004, 54(4): 257-267.
    [14] WALKER J, YU H S. Adaptive finite element analysis of cone penetration in clay[J]. Acta Geotech, 2004, 1: 43-57.
    [15] WEI L. Numerical simulation and field verification of inclined piezocone penetration test in cohesive soils[D]. Baton Rouge: Louisiana State University, 2004.
    [16] SHENG Daichao, CUI Lijie, ANSARI Yousef. Interpretation of cone factor in undrained soils via full-penetration finite-element analysis[J]. Int J Geomech, 2013, 13: 745-753.
    [17] ENDRA S. Finite element simulation of the cone penetration test in uniform and stratified sand[D]. Michigan: The University of Michigan, 2005.
    [18] 费 康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2010. (FEI Kang, ZHANG Jian-wei. The application of ABAQUS in Geotechnical Engineering[M]. Beijing: China Water Power Press, 2010. (in Chinese))
    [19] CHUNG S F, RANDOLPH M F, SCHNEIDER J A. Effect of penetration rate on penetrometer resistance in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(9): 1188-1196.
计量
  • 文章访问数:  308
  • HTML全文浏览量:  7
  • PDF下载量:  460
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-25
  • 发布日期:  2015-07-24

目录

    /

    返回文章
    返回