• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

长期交通荷载作用下路基沉降的实用计算方法

张幸幸, 张建民, 温彦锋

张幸幸, 张建民, 温彦锋. 长期交通荷载作用下路基沉降的实用计算方法[J]. 岩土工程学报, 2015, 37(11): 2067-2072. DOI: 10.11779/CJGE201511018
引用本文: 张幸幸, 张建民, 温彦锋. 长期交通荷载作用下路基沉降的实用计算方法[J]. 岩土工程学报, 2015, 37(11): 2067-2072. DOI: 10.11779/CJGE201511018
ZHANG Xing-xing, ZHANG Jian-min, WEN Yan-feng. Practical method to predict settlement of subgrade induced by long-term traffic loads[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2067-2072. DOI: 10.11779/CJGE201511018
Citation: ZHANG Xing-xing, ZHANG Jian-min, WEN Yan-feng. Practical method to predict settlement of subgrade induced by long-term traffic loads[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2067-2072. DOI: 10.11779/CJGE201511018

长期交通荷载作用下路基沉降的实用计算方法  English Version

基金项目: 铁道部科技研究开发计划重点课题(2012G013-F)
详细信息
    作者简介:

    张幸幸(1985- ),女,博士研究生,主要从事土的动本构模型和土石坝数值计算的研究。E-mail: zhangxx@tsinghua.org.cn。

Practical method to predict settlement of subgrade induced by long-term traffic loads

  • 摘要: 目前尚没有方法能很好地预测长期不规则交通荷载引起的路基沉降变形。土在长周次微小振幅荷载作用下产生塑性变形的机理尚不清楚,现有弹塑性理论也很难描述这种变形。基于等价黏弹塑性模型的理论,提出了一个实用的预测长期交通荷载作用下路基沉降的计算方法。等价黏弹塑性模型由两部分组成:一部分为黏弹性模型,用于计算地基的动力响应,采用了Ramberg-Osgood动剪切模量公式和Hardin- Drnevich阻尼比公式;另一部分为计算残余应变的经验公式。根据动三轴试验所揭示的无黏性土在长周次循环荷载作用下的变形特点,以及移动荷载作用下路基土单元动应力过程的特点,建立了本模型中计算残余应变的经验公式。在得到各单元的残余应变后,可结合有限元方法计算得到路基的沉降。
    Abstract: There are still no effective methods to predict the settlement of subgrades caused by long-term irregular traffic loads. The mechanism of the plastic deformation caused by slight long-term dynamic loads has not been understand. And the existing plastic theory can hardly involve this type of deformation. In order to solve this problem, a practical method is proposed based on an equivalent vicso-elasto-plastic model. The model consists of two components. The first is a visco-elastic model, in which dynamic modulus is determined by Ramberg-Osgood equations and the damping ratio is determined by the equation proposed by Hardin and Drnevich. The other is empirical equation determines the residual strain, which is based on the stress process in subgrade foundation caused by traffic loads and the characteristics of residual strain tested by dynamic triaxial tests. After the stress process is obtained using the finite element analysis, the residual strain of every element can be determined by the empirical equation, then the settlement of the subgrade can be predicted. A simple example is presented to illustrate this procedure.
  • [1] TANIGUCHI E, WHITMAN R V, MARR W A. Prediction of earthquake-induced deformation of earth dams[J]. Soils and Foundations, 1983, 23(4): 126-132.
    [2] 陈生水, 沈珠江. 堆石坝的地震永久变形分析[J]. 水利水运科学研究, 1990(3): 277-286. (CHEN Sheng-shui, SHEN Zhu-jiang. Analysis of seismic permanent deformation of rockfill dam[J]. Journal of Nanjing Hydraulic Research Institute, 1990(3): 277-286. (in Chinese))
    [3] 沈珠江. 一个计算砂土液化变形的等价黏弹性模式[C]// 中国土木工程学会. 第四届土力学及基础工程学术会议论文选集. 北京: 中国建筑工业出版社, 1986: 199-207. (SHEN Zhu-jiang. An equivalent visco-elastic mechanism for liquefaction-induced deformation in sand[C]// China Civil Engineering Society. Selected Papers of the Fourth Symposium on Soil Mechanics and Foundation Engineering. Beijing: China Architecture & Building Press, 1986: 199-207. (in Chinese))
    [4] 王志良, 王余庆, 韩清宇. 不规则循环剪切荷载作用下土的黏弹塑性模型[J]. 岩土工程学报, 1980, 2(3): 10-19. (WANG Zhi-liang, WANG Yu-qing, HAN Qing-yu. Visco- elastoplastic soil model for irregular shear cyclic dynamic loadings[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(3): 10-19. (in Chinese))
    [5] RAMBERG W, OSGOOD W R. Description of stress-strain curves by three parameters[R]. Washington D C: National Advisory Committee For Aeronautics, 1943.
    [6] HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils[J]. Journal of the Soil Mechanics and Foundations Division 98(7): 667-69.
    [7] 王 军, 蔡袁强. 循环荷载作用下饱和软黏土应变累积模型研究[J]. 岩石力学与工程学报. 2008, 27(2): 331-338. (WANG Jun, CAI Yuan-qiang. Study on accumulative plastic strain model of soft clay under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 331-338. (in Chinese))
    [8] WICHTMANN T. Explicit accumulation model for non-cohesive soils under cyclic loading[M]. Bochum: TH Triantafyllidis, 2005.
    [9] 张宏博. 长期往复荷载作用下无黏性材料累积变形研究[D]. 上海: 同济大学, 2006. (ZHANG Hong-bo. Long term cumulative deformation of cohesionless material induced by repeated loading[D]. Shanghai: Tongji University, 2006. (in Chinese))
    [10] 张宏博, 黄茂松, 宋修广. 循环荷载作用下粉细砂累积变形的等效黏塑性本构模型[J]. 水利学报, 2009, 40(6): 651-658. (ZHANG Hong-bo, HUANG Mao-song, SONG Xiu-guang. Equivalent viscoplastic model for cumulative deformation of sandy silt under long-term cyclic loading[J]. Journal of Hydraulic Engineering, 2009, 40(6): 651-658. (in Chinese))
    [11] 沈珠江, 王仁钟. 反复荷载作用下砂土变形的平均过程理论[J]. 水利水运科学研究, 1980(4): 43-60. (SHEN Zhu-Jiang, WANG Ren-zhong. A mean deformation theory for sands under cyclic loading[J]. Journal of Nanjing Hydraulic Research Institute, 1980(4): 43-60. (in Chinese))
    [12] 沈珠江, 徐 刚. 堆石料的动力变形特性[J]. 水利水运科学研究, 1996, 33(2): 143-150. (SHEN Zhu-Jiang, XU Gang. Deformation behavior of rock materials under cyclic loading[J]. Journal of Nanjing Hydraulic Research Institute, 1996, 33(2): 143-150. (in Chinese))
    [13] 薛富春, 张建民. 移动荷载作用下高速铁路轨道-路基-地基耦合系统振动加速度的空间分布特征[J]. 岩土工程学报, 2014, 36(12): 2179-2187. (XUE Fu-chun, ZHANG Jian-min. Spatial distribution of vibration accelerations in coupled rail-embankment foundation system on high-speed railway under moving loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2179-2187. (in Chinese))
    [14] GAZETAS G, DAKOULAS P. Seismic analysis and design of rockfill dams: state-of-the-art[J]. Soil Dynamics and Earthquake Engineering, 1992, 11(1): 27-61.
    [15] UDDIN N. A dynamic analysis procedure for concrete-faced rockfill dams subjected to strong seismic excitation[J]. Computers & Structures, 1999, 72(1): 409-421.
计量
  • 文章访问数:  293
  • HTML全文浏览量:  5
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-27
  • 发布日期:  2015-11-19

目录

    /

    返回文章
    返回