基于模态参量变化的边坡动态稳定分析新方法
New method for dynamic analysis of rock slope stability based on modal parameters
-
摘要: 边坡稳定问题一直是岩土工程领域研究的重要课题,但对于基于模态参量变化的动态稳定分析研究不多。因此,研究将坡体重点区域的黏聚力作为动态参量,实现边坡体动态稳定分析评价。基于GIS三维滑坡分析模块,结合实时固有振动频率对黏聚力参量进行调整,实现坡体更加客观的强度折减。固有振动频率与滑坡黏聚力关系的构建,可以有效解决数值分析中参数选取和调节的困难。通过试验和实际边坡的应用,基于模态参量变化的动态数值分析,避开了极限平衡法主观缺点,模拟结果更加符合客观实际。同时,分析结果更加客观、合理,在充分考虑边坡的空间特性的同时,也能客观评价强度折减情况,为边坡稳定性分析提供一个客观有效的新方法。Abstract: The slope stability analysis is a focal problem in the geotechnical engineering field. However, few dynamic stability analyses are made based on the ever-changing modal parameters. Therefore, the cohesion in key regions is taken as the dynamic parameter so as to realize the dynamic stability analysis of the slope. By using GIS (geographic information systems) 3D slope stability analysis models, the cohesion can be adjusted by real-time data of natural vibration frequencies in order to make the strength reduction method more real and effective. The establishment of the inherent relationship between the vibration frequency and the cohesion of landslide can effectively solve the difficulty of selection and adjustment of the parameter in numerical analysis. The experimental results show that the dynamic stability analysis based on the variation of modal parameters makes full use of the objective advantages of strength reduction and avoids the subjective disadvantages of the limit equilibrium method. Thus, the simulated results are more close to the actual conditions. Furthermore, this new method can take into full account the slope space features and allow an objective evaluation of the strength retrogression, so it is reliable for slope stability analysis.