• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑非达西渗流和变荷载影响的软土大变形固结分析

李传勋, 谢康和

李传勋, 谢康和. 考虑非达西渗流和变荷载影响的软土大变形固结分析[J]. 岩土工程学报, 2015, 37(6): 1002-1009. DOI: 10.11779/CJGE201506005
引用本文: 李传勋, 谢康和. 考虑非达西渗流和变荷载影响的软土大变形固结分析[J]. 岩土工程学报, 2015, 37(6): 1002-1009. DOI: 10.11779/CJGE201506005
LI Chuan-xun, XIE Kang-he. Large-strain consolidation of soft clay with non-Darcian flow by considering time-dependent load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1002-1009. DOI: 10.11779/CJGE201506005
Citation: LI Chuan-xun, XIE Kang-he. Large-strain consolidation of soft clay with non-Darcian flow by considering time-dependent load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1002-1009. DOI: 10.11779/CJGE201506005

考虑非达西渗流和变荷载影响的软土大变形固结分析  English Version

基金项目: 国家自然科学基金项目(51109092, 51179170);中国博士 后基金面上项目(2013M530237);中国博士后基金第七批特别项目于砂样室内渗透试验得到的达西定律来描述, 但很多 (2014T70479)
详细信息
    作者简介:

    李传勋(1978– ), 男, 副教授, 主要从事岩土工程方面的教学和科研。E-mail: lichuanxun@yeah.net

  • 中图分类号: TU43

Large-strain consolidation of soft clay with non-Darcian flow by considering time-dependent load

  • 摘要: 软土中的非达西渗流和大变形特性已为人们所认识, 但能考虑土中非达西渗流的软土大变形固结理论还鲜有报道。考虑实际中的变荷载, 基于土中的非达西渗流现象在拉格朗日坐标系中建立以超静孔隙水压力为变量的软土一维大变形固结模型。利用有限差分法对所建立的模型进行数值求解, 并与特定条件下的解析解对比, 以验证数值解的可靠性。最后着重分析非达西渗流模型参数对软土大变形固结性状的影响及大、小应变不同几何假定下非达西渗流固 结性状的异同。结果表明非达西渗流模型的参数m 及i1值越大, 地基的固结速率就越慢;如果小应变固结理论中自重应力的计算也考虑沉积作用, 此时尽管软土在大变形几何假定下的固结速率要比小变形假定下快, 但大、小应变固结理论计算的地基最终沉降值相等;基于此, 鉴于大变形固结理论的复杂性, 此种情况下应用小变形代替大变形几何假定所引起的计算误差是可接受的。
    Abstract: The large deformation behavior and the non-Darcian flow in soft clay have been already recognized, however, the theory of large-strain nonlinear consolidation of soft clay with non-Darcian flow has been rarely reported. By considering time-dependent load, a model for one-dimensional large-strain consolidation of soft clay with non-Darcian flow law is developed in the Lagrangian coordinate, in which the excess pore water pressure serves as a variable. The finite difference method is adopted to obtain numerical solutions for this model, and a comparison between the numerical solutions and analytical solutions which are obtained on some specific conditions is presented to verify the reliability of the numerical solutions. Finally, the influence of non-Darcian flow on large-strain consolidation behavior and the difference in consolidation behavior of clay with non-Darcian flow between large-strain and small-strain conditions are investigated. The results show that the consolidation rate may decrease with an increase in the value of m or i1. If the self-weight stress for the small-strain consolidation with non-Darcian flow is also calculated by considering its sedimentation, the final settlement of clay layer under large-strain condition is the same as that in the small-strain case, although the consolidation rate under large-strain condition is faster than that under small-strain condition. As a result, due to the complexity of the large-strain condition, the error in settlement curve induced by the replacement of large-strain condition by small-strain condition can be acceptable in this case.
  • [1] HANSBO S. Consolidation of clay, with special reference to influence of vertical sand drains[C]// Swedish Geotechnical Institute Proceeding. Stockholm: Swedish Geotechnical Institute, 1960: 45–50.
    [2] SWARTZENDRUBER D. Modification of Darcy's law for the flow of water in soils[J]. Soil Science, 1962, 93(1): 22– 29.
    [3] MILLER R J, LOW P E. Threshold gradient for water flow in clay systems[J]. Soil Science Society of American Journal, 1963, 27(6): 605–609.
    [4] 齐 添, 谢康和, 胡安峰, 等. 萧山黏土非达西渗流性状 的试验研究[J].浙江大学学报(工学版), 2007, 41(6): 1023– 1028. (QI Tian, XIE Kang-he, HU An-feng, et al. Laboratorial study on non-Darcy seepage in Xiaoshan clay[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(6): 1023–1028. (in Chinese))
    [5] HANSBO S. Deviation from Darcy's law observed in one-dimensional consolidation[J]. Géotechnique, 2003, 53(6): 601–605.
    [6] PASCAL F, PASCAL H, MURRAY D W. Consolidation with threshold gradients[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5(3): 247– 261.
    [7] 刘慈群. 有起始比降固结问题的近似解[J]. 岩土工程学报, 1982, 4(3): 107–109. (LIU Ci-qun. Approximate solution for one-dimensional consolidation with threshold gradient[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(3): 107–109. (in Chinese))
    [8] XIE K H, WANG K, WANG Y L, et al. Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient[J]. Computers and Geotechnics, 2010, 37(4): 487–493.
    [9] HANSBO S. Consolidation equation valid for both Darcian and non-Darcian flow[J]. Géotechnique, 2001, 51(1): 51–54.
    [10] HANSBO S. Deviation from Darcy’s law observed in one-dimensional consolidation[J]. Géotechnique, 2003, 53(6): 601–605.
    [11] TEH C I, NIE X Y. Coupled consolidation theory with non-Darcian flow[J]. Computers and Geotechnics, 2002, 29(3): 169–209.
    [12] 鄂 建, 陈 刚, 孙爱荣. 考虑低速非Darcy 渗流的饱和 黏性土一维固结分析[J]. 岩土工程学报, 2009, 31(7): 1115- 1119. (E Jian, CHEN Gang, SUN Ai-rong. One-dimensional consolidation of saturated cohesive soil considering non-Darcy flows[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1115–1119. (in Chinese))
    [13] LI C X, XIE K H. One-dimensional nonlinear consolidation of soft clay with the non-Darcian flow[J]. Journal of Zhejiang University, 2013, 14(6): 435–446.
    [14] 刘忠玉, 闫富有, 王喜军. 基于非达西渗流的饱和黏土一 维流变固结分析[J]. 岩石力学与工程学报, 2013, 32(9): 1937–1944. (LIU Zhong-yu, YAN Fu-you, WANG Xi-jun. One-dimensional rheological consolidation analysis of saturated clay considering non-Darcy flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1937–1944. (in Chinese))
    [15] GIBSON R E, ENGLAND G L, HUSSEY M J L. The theory of one-dimensional consolidation of saturated clays: I finite non-linear consolidation of thin homogeneous layers[J]. Géotechnique, 1967, 17(2): 261–273.
    [16] GIBSON R E, SCHIFFMAN R L, CARGILL K W. The theory of one-dimensional consolidation of saturated clays: II Finite non-linear consolidation of thick homogeneous layers[J]. Canadian Geotechnical Journal, 1981, 18(2): 280– 293.
    [17] 黄杰卿, 谢新宇, 王文军, 等. 考虑起始比降的饱和土体 一维复杂非线性固结研究[J]. 岩土工程学报, 2013, 35(2): 355–363. (HUANG Jie-qing, XIE Xin-yu, WANG Wen-jun, et al. Study on one-dimensional nonlinear consolidation behavior for saturated soils with threshold gradient[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 355–363. (in Chinese))
    [18] XIE K H, LEO C J. Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clays[J]. Computers and Geotechnics, 2004, 31(4): 301– 314.
    [19] 谢康和, 郑 辉, LEO C J. 变荷载下饱和软黏土一维大应 变固结解析理论[J]. 水利学报, 2003, 34(10): 6–13. (XIE Kang-he, ZHENG Hui, LEO C J. Analytical solution for 1-D large strain consolidation of saturated soft clay under time-depending loading[J]. Journal of Hydraulic Engineering, 2003, 34(10): 6–13. (in Chinese))
    [20] 李冰河, 谢康和, 应宏伟, 等. 软黏土非线性一维大应变 固结分析[J]. 岩土工程学报, 2000, 22(3): 368–370. (LI Bing-he, XIE Kang-he, YING Hong-wei, et al. Analysis of one dimensional nonlinear large-strain consolidation of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 368–370. (in Chinese))
计量
  • 文章访问数:  354
  • HTML全文浏览量:  2
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-07
  • 发布日期:  2015-06-18

目录

    /

    返回文章
    返回