• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

孔隙溶液浓度的变化对黏土强度的影响

于海浩, 韦昌富, 颜荣涛, 傅鑫晖, 马田田

于海浩, 韦昌富, 颜荣涛, 傅鑫晖, 马田田. 孔隙溶液浓度的变化对黏土强度的影响[J]. 岩土工程学报, 2015, 37(3): 564-569. DOI: 10.11779/CJGE201503023
引用本文: 于海浩, 韦昌富, 颜荣涛, 傅鑫晖, 马田田. 孔隙溶液浓度的变化对黏土强度的影响[J]. 岩土工程学报, 2015, 37(3): 564-569. DOI: 10.11779/CJGE201503023
YU Hai-hao, WEI Chang-fu, YAN Rong-tao, FU Xin-hui, MA Tian-tian. Effects of pore solution concentrations on shear strength of clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 564-569. DOI: 10.11779/CJGE201503023
Citation: YU Hai-hao, WEI Chang-fu, YAN Rong-tao, FU Xin-hui, MA Tian-tian. Effects of pore solution concentrations on shear strength of clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 564-569. DOI: 10.11779/CJGE201503023

孔隙溶液浓度的变化对黏土强度的影响  English Version

基金项目: 国家自然科学基金项目(11372078,51309055); 广西自然科学基金创新研究团队项目(2012GXNSFGA060001); 广西岩土力学与工程重点实验室项目(12—A—01—032)
详细信息
    作者简介:

    于海浩(1988- ),男,硕士研究生,研究方向为水土化学力学耦合作用。E-mail: yuhaihao_ch@163.com。

  • 中图分类号: TU443

Effects of pore solution concentrations on shear strength of clay

  • 摘要: 孔隙溶液的变化对土体的强度具有重要作用,为了分析孔隙溶液浓度的变化对黏土的有效强度及黏土颗粒微观结构的影响,基于应变控制式室内直剪仪和电镜扫描技术,对采用不同浓度NaCl溶液饱和的重塑土样进行强度和微观试验研究。试验结果表明孔隙溶液浓度的变化对土体黏聚力有很大影响,随着NaCl溶液浓度的增加,黏聚力呈现降低趋势,当NaCl孔隙溶液达到0.1 mol/L时,黏聚力出现负值。黏聚力主要来源于颗粒间物理化学作用力对颗粒移动的阻碍作用,当黏土孔隙中的NaCl溶液浓度增加时,颗粒间斥力减小,颗粒变的易于移动,黏聚力下降。同时由于土中真实孔隙水压力的存在,使得黏聚力呈现负值。另外,通过电镜扫描对土体微观结构的探测表明,用NaCl溶液调拌的土样主要以凝聚结构为主,而用去离子水调拌的土样主要以集聚结构为主。
    Abstract: Pore solutions play an important role in the shear strength of soils. A series of shearing and microcosmic tests are performed on the samples saturated with NaCl solutions with different concentrations to investigate the effects of pore solution concentrations on the effective strength of clay. The experimental results show that the pore solution concentrations have strong effects on cohesion of samples. The cohesion decreases with the increase of pore solution concentrations. As the concentration approaches 0.1 mol/L, the cohesion decreases to below 0 kPa. The cohesion depends on the block effect of physical and chemical forces between particles on the interparticle sliding. The repulsion decreases with the increase of the pore solution concentration which makes the interparticle sliding more easily. Due to the development of real pore pressure in the samples, the cohesion decreases to below 0 kPa. The environmental scanning electron microscopy tests on the microstructures confirm that clays form flocculation in NaCl solution and form aggregation in water.
  • [1] 孙重初. 酸液对红黏土物理力学性质的影响[J]. 岩土工程学报, 1989, 11(4): 89-93. (SUN Zhong-chu. The effect of acidizing fluid on the physico-mechanical properties of red clay[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(4): 89-93. (in Chinese))
    [2] NAGEL N. Ekofisk geomechanics monitoring[C]// Proceedings of the International Workshop on Geomechanics in Reservoir Simulation. Reuil-Malmaison, 2010.
    [3] 王 洋, 汤连生. 水土作用模式对残积红黏土力学性质的影响分析[J]. 中山大学学报 (自然科学版), 2007, 46(1): 128-132. (WANG Yang, TANG Lian-sheng. Effects of water-soil interaction on mechanical strength of residual red clay[J]. Acta Scientiarum Naturalium Universitais Sunyatseni (Natural Science), 2007, 46(1): 128-132. (in Chinese))
    [4] SPAGNOLI G, RUBINOS D. Undrained shear strength of clays as modified by Ph variations[J]. Bull Eng Geol Environ, 2012, 71: 135-148.
    [5] 汤连生. 水-土化学的力学效应及机理分析[J]. 中山大学学报(自然科学版), 2000, 39(4): 104-109. (TANG Lian-sheng. Mechanical effect of chemical action of water on soil and analysis on its mechanism[J]. Acta Scientiarum Naturalium Unversitatis Sunyatseni (Natural Science), 2000, 39(4): 104-109. (in Chinese))
    [6] 王 军, 曹 平. 水土化学作用对土体抗剪强度的影响[J]. 中南大学学报(自然科学版), 2010, 41(1): 245-249. (WANG Jun, CAO Ping. Influence of chemical action of water on soil shear strength[J]. Journal of Central South University (Natural Science), 2010, 41(1): 245-249. (in Chinese))
    [7] NAEINI S A, JAHANFAR M A. Eeffect of salt solution and plasticity index on undrain shear strength of clays[J]. World Academy of Science, Engineering and Technology, 2011, 49: 982-986.
    [8] WARKENTIN B P, YONG R N. Shear strength of montmorillontite and kaolinite related to interparticle forces[J]. Clays and Clay Minerals, 1962, 9: 210-218.
    [9] STUDDS P G, STEWART D I , COUSENS T W. The effects of salt solutions on the properties of bentonite-sand mixtures[J]. Clay Minerals, 1998, 33: 651-660.
    [10] PI MAIO C. Exposure of bentonite to salt solution: osmotic and mechanical effects[J]. Géotechnique, 1996, 46(4): 695-707.
    [11] RAND B, PEKENC E. Investigation into the existence of edge-face coagulated structures in na-montmorillonite suspensions[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistryin Condensed Phases, 1980, 76: 225-235.
    [12] SL237—1999土工试验规程[S]. 1999. (SL237—1999 Specification of soil tests[S]. 1999. (in Chinese))
    [13] MICHELE C, MARILENA L, ROBERTO V, et al. Compressibility and residual shear strength of smectitic clays: influence of pore aqueous solutions and organic solvents[J]. Italiana Geotechnical, 2005, 1: 34-46.
    [14] SANTAMARINA J C, KLEIN K A. Micro-scale aspects of chemical-mechanical coupling: interparticle forces and fabric[M]// Chemo-Mechanical Coupling in Clays: from Nano-Scale to Engineering Applications, MAIO C D, HUECKEL T, LORET B, ed. A.A. Balkema, Lisse, Maratea, 2002: 47-64.
    [15] WEI Chang-fu. A theoretical framework for modeling the Chemo-mechanical behavior of unsaturated soils[J]. Vadose Zone Journal, 2014, 13(9): 1-21. (in Chinese))
    [16] JAMES K. Mitchell and kenichi soga[M]// Fundamentals of Soil Behavior, MITCHELL James K, SOGA Kenichi, ed. New York: Wiley, 2005
    [17] LAME T W, ASCE F. A mechanistic picture of shear strength in clay[C]// Soil Shear Strength Confence. Boulder, 1960: 555-580.
  • 期刊类型引用(9)

    1. 胡长明,汪芳芳,朱武卫,袁一力,杨晓,柳明亮. 考虑参数随机性的压实黄土蠕变变形不确定性分析. 计算力学学报. 2024(02): 226-232 . 百度学术
    2. 王伟,王晓川,张振华,冯淦. 库水位初次升降对卧沙溪滑坡粉质黏土蠕变特性的影响及其变形规律研究. 灾害学. 2023(02): 197-205 . 百度学术
    3. 戚志宇,李志清. 黄土蠕变特性研究进展. 地球科学与环境学报. 2023(03): 485-510 . 百度学术
    4. 许旭兵,张帆,侯佼建,张敏,杨浩明,董成会. 黄河宁蒙河段黄土蠕变特性与分数阶本构模型研究. 华北水利水电大学学报(自然科学版). 2023(03): 61-68 . 百度学术
    5. 杨志斌. 基于蠕变试验下高边坡稳定性模拟研究. 西安科技大学学报. 2023(05): 988-999 . 百度学术
    6. 常留成,王红雨,王亚,曹静. 含砂量对砂-细粒混合土一维蠕变行为的影响. 岩土力学. 2023(12): 3370-3382+3511 . 百度学术
    7. 胡伦俊,原战辉,张继平,魏浩,汪亮,朱俊锜. 软土固结沉降规律及其蠕变特性试验研究. 四川建筑. 2022(S1): 72-76+79 . 百度学术
    8. 常波,谭维佳. 黄土滑坡滑带土剪切蠕变特性试验研究. 地质与勘探. 2022(06): 1252-1260 . 百度学术
    9. 王凯,胡再强,折海成,梁志超,冯哲,焦韩伟. 人工制备遗址土蠕变试验研究. 水力发电学报. 2020(04): 101-109 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  398
  • HTML全文浏览量:  6
  • PDF下载量:  533
  • 被引次数: 20
出版历程
  • 收稿日期:  2014-07-10
  • 发布日期:  2015-03-23

目录

    /

    返回文章
    返回