• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

北京市轨道交通基坑工程桩体变形特性

吴锋波, 金淮, 朱少坤

吴锋波, 金淮, 朱少坤. 北京市轨道交通基坑工程桩体变形特性[J]. 岩土工程学报, 2014, 36(zk2): 360-367. DOI: 10.11779/CJGE2014S2063
引用本文: 吴锋波, 金淮, 朱少坤. 北京市轨道交通基坑工程桩体变形特性[J]. 岩土工程学报, 2014, 36(zk2): 360-367. DOI: 10.11779/CJGE2014S2063
WU Feng-bo, JIN Huai, ZHU Shao-kun. Deformation characteristic of piles foundation pit engineering of urban rail transit in Beijing[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 360-367. DOI: 10.11779/CJGE2014S2063
Citation: WU Feng-bo, JIN Huai, ZHU Shao-kun. Deformation characteristic of piles foundation pit engineering of urban rail transit in Beijing[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 360-367. DOI: 10.11779/CJGE2014S2063

北京市轨道交通基坑工程桩体变形特性  English Version

详细信息
    作者简介:

    吴锋波(1982- ),男,博士,主要从事城市轨道交通工程安全风险评估和监测研究。E-mail: wufengbo820424@163.com。

Deformation characteristic of piles foundation pit engineering of urban rail transit in Beijing

  • 摘要: 根据基坑开挖深度、地层条件的不同,对北京市轨道交通80个明挖顺作法基坑工程实测结果进行统计分析,研究确定北京砂卵石和黏性土地区深基坑开挖引起的桩体变形规律。研究表明:①围护桩顶和桩体均存在向基坑内和基坑外两个方向的水平位移,水平位移实测结果分布形态均近似符合正态分布。②围护桩整体最大变形均以桩体变形为主,桩向基坑内水平位移平均值约为0.05%H~0.12%H,向基坑外水平位移平均值约为0. 02%H~0. 07%H。③插入比、长宽比、基坑系统刚度等对桩的最大水平位移有一定的影响。④桩向基坑内水平位移最大值主要出现在0.26H~0.45H处,向基坑外水平位移最大值主要出现在0.18H~0.20H处。研究成果可对未来北京及其他地区城市轨道交通基坑工程变形大小及安全性的预测和评估,指导基坑工程设计与施工工作,对防止基坑事故的发生具有重要意义。
    Abstract: According to the difference of excavation depth and the formation conditions, 80 case histories of foundation pit engineering of urban rail transit in Beijing are analyzed. The deformation laws of piles excavation induced by foundation pit engineering are studied in Beijing sand & gravel zone and clay soil zone. The results show that: (1) The horizontal displacements of retaining piles at top and body are in two directions, that is, towards and out of the foundation pit and the measured displacements are approximately in normal distribution. (2) The maximum pile deformation is the pile body deformation. The maximum pile deformation is about 0.05%H~0.12%H towards the foundation pit and about 0.02%H~0. 07%H out of the foundation pit. (3) The insertion ratio, the ratio of length to width and the system stiffness have certain influence on the maximum pile deformation. (4) The maximum value of horizontal displacement of piles towards the foundation pit mainly appears at 0.26H~0.45H, and the maximum value of horizontal displacement of piles out of the foundation pit mainly appears at 0.18H~0.20H. The results can be used to predict the lateral deformation of similar projects in Beijing and other areas and to guide the design and constructions. It also has great significance for preventing accidents foundation pits.
  • [1] PECK R B. Deep excavation and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanicsand Foundation Engineering. Mexico, 1969: 225-290.
    [2] LONG M. Database for retaining wall and ground movements due to deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(33): 203-224.
    [3] MOORMANN C. Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database[J]. Soils and Foundations, 2004, 44(1): 87-98.
    [4] CLOUGH G W, O’ROURKE T D. Construction induced movements of in situ walls[C]// Proceedings, ASCE Conference on Design and Performance of Earth Retaining Structures, Geotechnical Special Publication No. 25. New York :ASCE, 1990: 439-470.
    [5] MASUDA T. Behavior of deep excavation with diaphragm wall[D]. Cambridge: Massachusetts Institute of Technology (MIT), 1993.
    [6] OU C Y, HSIEH P G, CHIOU D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 30(5): 758-767.
    [7] CARDER D R. Ground movements caused by different embedded retaining wall construction techniques[R]. Transport Research Laboratory Report 172, Berkshire, U.K., 1995.
    [8] YOO C. Behavior of braced and anchored walls in soils overlying rock[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(3): 225-233.
    [9] 刘兴旺, 施祖元, 益德清, 等. 软土地区基坑开挖变形性状研究[J]. 岩土工程学报, 1999, 21(4): 456-460. (LIU Xing-wang, SHI Zu-yuan, YI De-qing, et al. Deformation characteristics analysis of braced excavation on soft clay[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 456-460. (in Chinese))
    [10] WANG Z W, NG C W W, LIU G B. Characteristics of wall deflections and ground surface settlements in Shanghai[J]. Canadian Geotechnical Journal, 2005, 42(5): 1243-1254.
    [11] 徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007. (XU Zhong-hua. Deformation behavior of deep excavations supported by permanent structure in shanghai soft deposit[D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese))
    [12] 徐中华, 王卫东. 深基坑变形控制指标研究[J]. 地下空间与工程学报, 2010, 6(3): 619-626. (XU Zhong-hua, WANG Wei-dong. Deformation control criteria of deep excavations[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(3): 619-626. (in Chinese))
    [13] 王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33(11): 1659-1666. (WANG Wei-dong, XU Zhong-hua, WANG Jian-hua. Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1659-1666. (in Chinese))
    [14] 李 淑, 张顶立, 房 倩, 等. 北京地区深基坑墙体变形特性研究[J]. 岩石力学与工程学报, 2012, 31(11): 2344-2353. (LI Shu, ZHANG Ding-li, FANG Qian. Research on characteristics of retaining wall deformation due to deep excavation in Beijing[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2344-2353. (in Chinese))
计量
  • 文章访问数:  369
  • HTML全文浏览量:  2
  • PDF下载量:  356
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-27
  • 发布日期:  2014-07-27

目录

    /

    返回文章
    返回