• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
郭健, 查吕应, 庞有超, 沈爽爽, 夏鹏. 基于小波分析的深基坑地表沉降预测研究[J]. 岩土工程学报, 2014, 36(zk2): 343-347. DOI: 10.11779/CJGE2014S2060
引用本文: 郭健, 查吕应, 庞有超, 沈爽爽, 夏鹏. 基于小波分析的深基坑地表沉降预测研究[J]. 岩土工程学报, 2014, 36(zk2): 343-347. DOI: 10.11779/CJGE2014S2060
GUO Jian, ZHA Lü-ying, PANG You-chao, SHEN Shuang-shuang, XIA Peng. Prediction for ground settlement of deep excavations based on wavelet analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 343-347. DOI: 10.11779/CJGE2014S2060
Citation: GUO Jian, ZHA Lü-ying, PANG You-chao, SHEN Shuang-shuang, XIA Peng. Prediction for ground settlement of deep excavations based on wavelet analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 343-347. DOI: 10.11779/CJGE2014S2060

基于小波分析的深基坑地表沉降预测研究

Prediction for ground settlement of deep excavations based on wavelet analysis

  • 摘要: 深基坑开挖必然引起地表沉降,地表沉降监测数据不可避免要受到施工及周边环境的干扰,使沉降数据真实性受到极大的影响。以武汉深基坑工程的大量监测数据为基础,提出一种小波分析法与径向基神经网络的混合建模方法,对深基坑地表变形进行沉降预测分析。首先运用小波分析对实测数据进行去噪处理,提取反映实际变化的沉降数据作为径向基神经网络输入的特征向量,构建小波网络W-RBF预测模型,采用滚动预测方法对地表沉降进行预测。工程应用结果表明,W-RBF模型预测性能,要优于带有噪声构造的原始数据预测结果,具有较高的预测精度,可满足深基坑工程的信息化施工要求。

     

    Abstract: Deep excavation will cause ground settlement inevitably. The measured data of ground settlement are usually disturbed by construction and surrounding enviroment, and the validation is greatly affected because of the noise in the settlement data. Based on the large amount of data collected from deep excavations, a new model combining the wavelet analysis with the radial basis function (RBF) neural network is proposed to predict ground settlement. The wavelet analysis is used to denoise effectively the measured data, and the settlement curve close to the practical situation can be obtained and taken as the characteristic vector of the RBF neural input layer. A prediction model for the wavelet network (W-RBF) is formed to predict ground settlement based on rolling prediction. The results of case study show that the prediction performance of W-RBF model is significantly better than that by using raw data with noises. It has high prediction accuracy and is fit for modern information construction.

     

/

返回文章
返回