• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

粒径对多孔介质中悬浮颗粒迁移—沉积特性的影响

刘泉声, 崔先泽, 张程远, 占婷

刘泉声, 崔先泽, 张程远, 占婷. 粒径对多孔介质中悬浮颗粒迁移—沉积特性的影响[J]. 岩土工程学报, 2014, 36(10): 1777-1783. DOI: 10.11779/CJGE201410003
引用本文: 刘泉声, 崔先泽, 张程远, 占婷. 粒径对多孔介质中悬浮颗粒迁移—沉积特性的影响[J]. 岩土工程学报, 2014, 36(10): 1777-1783. DOI: 10.11779/CJGE201410003
LIU Quan-sheng, CUI Xian-ze, ZHANG Cheng-yuan, ZHAN Ting. Effects of particle size on characteristics of transportation and deposition of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1777-1783. DOI: 10.11779/CJGE201410003
Citation: LIU Quan-sheng, CUI Xian-ze, ZHANG Cheng-yuan, ZHAN Ting. Effects of particle size on characteristics of transportation and deposition of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1777-1783. DOI: 10.11779/CJGE201410003

粒径对多孔介质中悬浮颗粒迁移—沉积特性的影响  English Version

基金项目: 国家自然科学基金项目(41272272); 湖北省自然科学基金项目(132002); 国家重点实验室基金项目(SKLQ009)
详细信息
    作者简介:

    刘泉声(1962- ),男,研究员、博士生导师,主要从事岩土力学与地下工程方面的研究工作。E-mail: liuqs@whrsm.ac.cn。

Effects of particle size on characteristics of transportation and deposition of suspended particles in porous media

  • 摘要: 粒径变化对悬浮颗粒在多孔介质中迁移—沉积过程影响的研究有重要意义。利用自主研发的砂层迁移—沉积模拟试验系统,研究不同粒径的悬浮颗粒在不同尺寸多孔介质中的迁移—沉积特性。结果表明,对于相同尺寸的多孔介质,随着悬浮颗粒粒径的增加,到达相对浓度峰值时间增加,而对应的相对浓度峰值降低;同时,对于相同粒径的悬浮颗粒,随着多孔介质尺寸增大,相对浓度峰值增加;另外,相对于多孔介质,悬浮颗粒粒径的变化对其迁移—沉积过程影响更为显著;随着多孔介质与悬浮颗粒粒径比增大,相对浓度的峰值和终值增大;根据粒径比不同将悬浮颗粒在多孔介质中的迁移—沉积类型划分为“滤饼过滤型”、“迁移—沉积型”、“自由迁移型”3种。研究结果为水源热泵回灌过程中悬浮颗粒在地层中的迁移—沉积特性进一步研究奠定了基础。
    Abstract: Particle size plays an important role in transportation and deposition of particles in porous media, especially in the WSHP engineering. The transportation-deposition characteristics of particles with different sizes in porous media with different sizes are studied by the self-developed sand transportation-deposition equipment. The studies show that when the size of porous media is fixed and the size of suspended particles increases, it needs more time to reach the peak of relative concentration, and at the same time, the corresponding peak value declines. Meanwhile, when the size of suspended particles is fixed and the size of porous media increases, the peak value of relative concentration also increases. Relative to the porous media, change in the size of suspended particles has more significant effects in the transportation-deposition process. In addition, the peak and final values of relative concentration increase when the diameter ratio of the porous media and suspended particles increases. Finally, according to the difference of diameter ratio, the model of transportation-deposition is divided into three types, i.e., filter cake mode, transportation-deposition mode and free transportation mode. The research lays a foundation for further studies on the transportation-deposition characteristics that suspended particles transport in layer, especially in the recharge process of WSHP.
  • [1] RYBACH L, SANNER B. Ground source heat pump systems, the European experience[J]. GHC Bull, 2000, 21(1): 16-26.
    [2] ABESSER C. Open-loop ground source heat pumps and groundwater systems: a literature review of current applications, regulations and problems[R]. Nottingham: British Geological Survey, 2010.
    [3] SANNER B, KARYTSAS C, MENDRINOS D, et al. Current status of ground source heat pumps and underground thermal energy storage in Europe[J]. Geothermics, 2003, 32(4): 579-588.
    [4] LUND J, SANNER B, RYBACH L, et al. Geothermal (ground-source) heat pumps-a world overview[J]. GHC Bulletin, 2004, 25(3): 1-10.
    [5] AHFIR N D, WANG H Q, BENAMAR A, et al. Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect[J]. Hydrogeology Journal, 2007, 15(4): 659-668.
    [6] ZHUANG J, TYNER J S, PERFECT E. Colloid transport and remobilization in porous media during infiltration and drainage[J]. Journal of Hydrology, 2009, 377(1): 112-119.
    [7] IWASAKI T, SLADE J J, STANLEY W E. Some notes on sand filtration [with discussion][J]. Journal American Water Works Association, 1937, 29(10): 1591-1602.
    [8] 楚锡华. 基于连续介质模型的颗粒材料孔隙度及孔隙水压力计算公式[J]. 岩土工程学报, 2009, 31(8): 1255-1257. (CHU Xi-hua. Evolution of porosity and pore water pressure of granular materials based on continuum model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1255-1257. (in Chinese))
    [9] SAKTHIVADIVEL R. Clogging of a granular porous medium by sediment[M]. California: Hydraulic Engineering Laboratory, College of Engineering, University of California, 1969.
    [10] 刘 杰, 张 雄. 多级配砾石土反滤设计方法试验研究[J]. 岩土工程学报, 1996, 18(6): 1-9. (LIU Jie, ZHANG Xiong. Study on filter design of broadly-graded soil[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 1-9. (in Chinese))
    [11] BRADFORD S A, YATES S R, BETTAHAR M, et al. Physical factors affecting the transport and fate of colloids in saturated porous media[J]. Water Resources Research, 2002, 38(12): 1-12.
    [12] BAUER D, GOYEAU B, GOBIN D. Large particle transport in porous media: Effect of pore plugging on the macroscopic transport properties[J]. Journal of Porous Media, 2008, 11(4): 343-360.
    [13] KAMPEL G, GOLDSZTEIN G H. Transport of non- Brownian particles in porous media[J]. SIAM Journal on Applied Mathematics, 2011, 71(3): 773-790.
    [14] 陈星欣, 白 冰. 重力对饱和多孔介质中颗粒输运特性的影响[J]. 岩土工程学报, 2012, 34(9): 1661-1667. (CHEN Xing-xin, BAI Bing. Effect of gravity on transport of particles in saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1661-1667. (in Chinese))
    [15] MCDOWELL‐BOYER L M, HUNT J R, SITAR N. Particle transport through porous media[J]. Water Resources Research, 1986, 22(13): 1901-1921.
    [16] AHFIR N D, BENAMAR A, ALEM A, et al. Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study[J]. Transport in Porous Media, 2009, 76(2): 289-307.
    [17] MASSEI N, LACROIX M, WANG H Q, et al. Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters[J]. Journal of Contaminant Hydrology, 2002, 57(1): 21-39.
    [18] KANTI SEN T, KHILAR K C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media[J]. Advances in Colloid and Interface Science, 2006, 119(2): 71-96.
    [19] FREY J M, SCHMITZ P, DUFRECHE J, et al. Particle deposition in porous media: analysis of hydrodynamic and weak inertial effects[J]. Transport in Porous Media, 1999, 37(1): 25-54.
    [20] ZAMANI A, MAINI B. Flow of dispersed particles through porous media—deep bed filtration[J]. Journal of Petroleum Science and Engineering, 2009, 69(1): 71-88.
    [21] SOLTANI M, AHMADI G. On particle adhesion and removal mechanisms in turbulent flows[J]. Journal of Adhesion Science and Technology, 1994, 8(7): 763-785.
计量
  • 文章访问数:  433
  • HTML全文浏览量:  18
  • PDF下载量:  542
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-04
  • 发布日期:  2014-10-19

目录

    /

    返回文章
    返回