• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于离散-连续耦合的尾矿坝边坡破坏机理分析

张铎, 刘洋, 吴顺川, 汪成林

张铎, 刘洋, 吴顺川, 汪成林. 基于离散-连续耦合的尾矿坝边坡破坏机理分析[J]. 岩土工程学报, 2014, 36(8): 1473-1482. DOI: 10.11779/CJGE201408013
引用本文: 张铎, 刘洋, 吴顺川, 汪成林. 基于离散-连续耦合的尾矿坝边坡破坏机理分析[J]. 岩土工程学报, 2014, 36(8): 1473-1482. DOI: 10.11779/CJGE201408013
ZHANG Duo, LIU Yang, WU Shun-chuan, WANG Cheng-lin. Failure mechanism analysis of tailing dams based on coupled discrete and continuous method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1473-1482. DOI: 10.11779/CJGE201408013
Citation: ZHANG Duo, LIU Yang, WU Shun-chuan, WANG Cheng-lin. Failure mechanism analysis of tailing dams based on coupled discrete and continuous method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1473-1482. DOI: 10.11779/CJGE201408013

基于离散-连续耦合的尾矿坝边坡破坏机理分析  English Version

基金项目: 国家自然科学基金项目(51178044,51174014); 新世纪优秀人才资助项目(NCET-11-0579)
详细信息
    作者简介:

    张 铎(1991- ),男,湖北天门人,博士研究生,主要从事土细观力学方面的研究与数值模拟。E-mail: tmyxzd@hotmail.com。

  • 中图分类号: TU457

Failure mechanism analysis of tailing dams based on coupled discrete and continuous method

  • 摘要: 在连续介质力学有限差分数值模拟的基础上,选取有代表性的局部区域进行基于有限差分与离散元的离散-连续耦合分析。采用上述方法模拟了某尾矿坝边坡在尾矿冲填前后潜在滑移带附近的宏细观力学特征。模拟结果显示,对于耦合和非耦合模型中的连续域两种方法的计算结果基本一致,但离散域的存在可以对滑移带形成过程的细观力学特征,如力链分布、土体细观组构发展等进行分析,研究边坡破坏的细观机理。研究表明,在滑移带形成过程中,滑移带内外土体各向异性的发展明显不同:随着荷载的施加,潜在滑移带内土体颗粒发生了较明显的位移,应力主方向发生了明显转动。颗粒的转动改变了带内组构的分布,并逐渐形成剪切滑移带,造成边坡失稳。滑带外土体虽然应力主方向发生了一定的偏转,但剪应力变化不大。采用的离散-耦合分析方法可以分析边坡在渐进破坏过程中滑移带形成的细观力学机理。
    Abstract: Based on the numerical results from the finite difference method (FDM), a representative local area is selected to conduct discrete-continuous coupling analysis using FDM and discrete element (DEM). The macro-scale and meso-scale mechanical responses of a tailing dam slope before and after filling are simulated by using the above model. The numerical results indicate that for the continuous domain, the results are almost the same using non-coupled method and coupled method. The meso-scale mechanical response in the slip bands, such as distribution of force chain and development of soil fabric, can be analyzed by using the discrete domain to discuss the meso-mechanism of failure of tailing dams. The research shows that in the formation of slip bands, the soil anisotropies in and out of the slip bands are obviously different: with the increasing load, soil particles in the potential slip bands have significant displacement. The main direction of stress has a significant rotation. The rotation of particles changes the fabric distribution, which contributes to the formation of slip bands and the slope instability. The main direction of stress of soil outside the bands rotates to some degree, while the shear stress changes little. The proposed discrete-continuous coupling method can analyze the meso-mechanism of formation of slip bands during slope progressive failure.
  • [1] 门永生. 我国尾矿库安全现状及事故防治措施[J]. 中国安全生产科学技术, 2009, 5(1): 48-52. (MEN Yong-sheng. The current safety situation of tailing reservoir in China and preventive measures[J]. Journal of Safety Science and Technology, 2009, 5(1): 48-52. (in Chinese))
    [2] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [3] FELIPPA C A, PARK K C. Staggered transient analysis procedures for coupled-field mechanical systems: formulation[J]. Computer Methods in Applied Mechanics and Engineering, 1980, 24(1): 61-111.
    [4] NITKA M, BILBIE G, COMBE G, et al. A DEM-FEM two-scale approach of the behavior of granular materials[C]// Powders and Grains 2009. Sydney, 2009: 443-446.
    [5] VILLARD P, CHEVALIER B, HELLO B L, et al. Coupling between finite and discrete element methods for the modeling of earth structures reinforced by geosynthetic[J]. Computers and Geotechnics, 2009, 36(5): 709-717.
    [6] AZEVEDO N M, LEMOS J V. Hybrid discrete element/finite element method for fracture analysis[J]. Computer Methods in Applied Mechanics and Engineering. 2006, 195(33-36): 4579-4593.
    [7] FAKHIMI A. A hybrid discrete-finite element model for numerical simulation of geomaterials [J]. Computers and Geotechnics, 2009, 36(4): 386-395.
    [8] WELLMANN C, WRIGGERS P. A two-scale model of granular materials[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 205-208(1): 46-58.
    [9] 乔 华, 陈伟球. 基于Arlequin方法的结构多尺度数值模拟[J]. 浙江大学学报(工学版). 2010, 44(12): 2314-2319. (QIAO Hua, CHEN Wei-qiu. Multi-scale numerical simulation of structures based on arlequin method[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(12): 2314-2319. (in Chinese))
    [10] AUBRY S, BAMMANN D J, HOYT J J, et al. A robust, coupled approach for atomistic-continuum simulation[R]. Albuquerque: Sandia National Laboratories, 2004.
    [11] 胥建龙, 唐志平. 离散元与有限元结合的多尺度方法及其应用[J]. 计算物理. 2003, 20(6): 477-482. (XU Jian-long, TANG Zhi-ping. Combined discrete/finite element multiscale numerical method and its application[J]. Chinese Journal of Computational Physics, 2003, 20(6): 477-482. (in Chinese))
    [12] 张 锐, 唐志平, 郑 航. 离散元与有限元耦合的时空多尺度计算方法[J]. 吉林大学学报(工学版), 2009, 39(2): 408-412. (ZHANG Rui, TANG Zhi-ping, ZHENG Hang. Time and space multiscale numerical method by coupling discrete element method and finite element method[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(2): 408-412. (in Chinese))
    [13] 张 锐, 郑 航, 唐志平. 基于元/网格动量传递的离散元与有限元耦合的时空多尺度算法[J]. 中国科学技术大学学报, 2008, 38(11): 1341-1347. (ZHANG Rui, ZHENG Hang, TANG Zhi-ping. Multiscale algorithm of time and space by coupling discrete element method and finite element method based on element/mesh momentum transfer[J]. Journal of University of Science and Technology of China, 2008, 38(11): 1341-1347. (in Chinese))
    [14] CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(4): 550-564.
    [15] 周 健, 黄 金, 张 姣, 等. 基于三维离散-连续耦合方法的分层介质中桩端刺入数值模拟[J]. 岩石力学与工程学报, 2012, 31(12): 2564-2571. (ZHOU Jian, HUANG Jin, ZHANG Jiao, et al. Coupled 3D discrete-continuum numerical simulation of pile tip penetration in layered media[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2564-2571. (in Chinese))
    [16] 陈建峰, 郑 希, 李辉利, 等. 软土地基加筋土挡墙二维离散-连续耦合模拟[J]. 土木工程学报, 2011, 44(增刊): 33-36. (CHEN Jian-feng, ZHENG Xi, LI Hui-li, et al. Coupling discontinuum-continuum simulation of a geogrid- reinforced soil retaining wall (RSW) on soft soil [J]. China Civil Engineering Journal, 2011, 44(S0): 33-36. (in Chinese))
    [17] 周 健, 邓益兵, 贾敏才, 等. 基于颗粒单元接触的二维离散-连续耦合分析方法[J]. 岩土工程学报, 2010, 32(10): 1479-1484. (ZHOU Jian, DENG Yi-bing, JIA Min-cai, et al. Coupling method of two-dimensional discontinuum- continuum based on contact between particle and element[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1479-1484. (in Chinese))
    [18] 周 健, 金炜枫. 基于耦合方法的挡土墙地震响应的数值模拟[J]. 岩土力学, 2010, 31(12): 3949-3957. (ZHOU Jian, JIN Wei-feng. Coupled approach based numerical simulation of a retaining wall under seismic excitation[J]. Rock and Soil Mechanics, 2010, 31(12): 3949-3957. (in Chinese))
    [19] 李锡夔, 万 柯. 颗粒材料多尺度分析的连接尺度方法[J]. 力学学报, 2010, 42(5): 889-900. (LI Xi-kui, WAN Ke. A bridging scale method for multi-scale analysis of granular materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 889-900. (in Chinese))
    [20] 万 柯, 李锡夔. Biot-Cosserat连续体-离散颗粒集合体模型的非饱和土连接尺度方法[J]. 应用力学学报, 2013, 30(3): 297-303. (WAN Ke, LI Xi-kui. Bridging scale method for Biot-Cosserat continuum-discrete particle assembly modeling of unsaturated soil[J]. Chinese Journal of Applied Mechanics, 2013, 30(3): 297-303. (in Chinese))
    [21] 蒋明镜, 王富周, 朱合华. 单粒组密砂剪切带的直剪试验离散元数值分析[J]. 岩土力学, 2010, 31(1): 253-257. (JIANG Ming-jing, WANG Fu-zhou, ZHU He-hua. Shear band formation in ideal dense sand in direct shear test by discrete element analysis[J]. Rock and Soil Mechanics, 2010, 31(1): 253-257. (in Chinese))
    [22] 毕忠伟, 孙其诚, 刘建国, 等. 双轴压缩下颗粒物质剪切带的形成与发展[J]. 物理学报, 2011, 60(3): 1-10. (BI Zhong-wei, SUN Qi-cheng, LIU Jian-guo, et al. Development of shear band in a granular material in biaxial tests[J]. Acta Physica Sinica, 2011, 60(3): 1-10. (in Chinese))
    [23] 刘 洋, 吴顺川, 周 健. 单调荷载下砂土变形过程数值模拟及细观机制研究[J]. 岩土力学, 2008, 29(12): 3199-3216. (LIU Yang, WU Shun-chuan, ZHOU Jian. Numerical simulation of sand deformation under monotonic loading and mesomechanical analysis[J]. Rock and Soil Mechanics, 2008, 29(12): 3199-3216. (in Chinese))
    [24] SATAKE M. Fabric tensor in granular materials: IUTAM conference on deformation and failure of granular materials[M]. Delft: Balkema, 1982: 63-68.
    [25] ROTHENBURG L, BATHURST R J. Analytical study of induced anisotropy in idealized granular materials[J]. Geotechnique, 1989, 39(4): 601-614.
    [26] PUEBLA H. A constitutive model for sand and the analysis of the CANLEX embankments[D]. Columbia: The University of British Columbia, 1999.
计量
  • 文章访问数:  352
  • HTML全文浏览量:  9
  • PDF下载量:  976
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-22
  • 发布日期:  2014-08-18

目录

    /

    返回文章
    返回