• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

甲烷水合物三维离散元模拟参数反演初探

蒋明镜, 贺洁, 申志福

蒋明镜, 贺洁, 申志福. 甲烷水合物三维离散元模拟参数反演初探[J]. 岩土工程学报, 2014, 36(4): 736-744. DOI: 10.11779/CJGE201404019
引用本文: 蒋明镜, 贺洁, 申志福. 甲烷水合物三维离散元模拟参数反演初探[J]. 岩土工程学报, 2014, 36(4): 736-744. DOI: 10.11779/CJGE201404019
JIANG Ming-jing, HE Jie, SHEN Zhi-fu. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 736-744. DOI: 10.11779/CJGE201404019
Citation: JIANG Ming-jing, HE Jie, SHEN Zhi-fu. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 736-744. DOI: 10.11779/CJGE201404019

甲烷水合物三维离散元模拟参数反演初探  English Version

基金项目: 国家杰出青年基金项目(51025932); 教育部博士点基金; 项目(2010007211008); 国家自然科学重点基金项目(51239010)
详细信息
    作者简介:

    蒋明镜(1965- ),男,教授,博士生导师,主要从事天然结构性黏土、砂土、非饱和土的宏、微观试验、本构模型和数值分析方面的研究以及土体渐进破坏分析,并从事相关的教学工作。E-mail: mingjing.jiang@tongji.edu.cn。

  • 中图分类号: TU41

Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate

  • 摘要: 含填充型水合物的砂性能源土可视为特殊的散粒体材料(砂粒和水合物颗粒混合物),具有明显的非连续特征。在离散元中若采用团粒(胶结成团的颗粒组)模拟填充水合物颗粒则需合理确定团粒结构内颗粒间胶结模型参数。为此,基于前人的室内纯水合物三轴试验资料进行离散元建模与参数反演。结果表明,宜采用松散且颗粒间摩擦系数较小的试样模拟水合物块体,当颗粒间摩擦系数小于等于0.0时,可确保无胶结试样的内摩擦角小于室内试验获得的纯水合物内摩擦角。胶结刚度只需在较小范围变化即可反映相同温度不同围压条件下的弹性特性,且微观刚度参数与胶结强度参数的相互作用较小,可以假定二者相互独立。通过选取不同的微观胶结强度值进行不同围压下的三轴压缩试验,建立微观胶结强度参数与宏观参数(内摩擦角和黏聚力)之间的关系,从而确定与室内试验强度特性相符合的微观胶结强度值,实现甲烷水合物三轴试验离散元模拟;由体变规律可知,甲烷水合物在发生剪胀前均存在一个初始的体积收缩阶段,且剪胀特性随着围压的减小而呈现增强趋势。通过微观变量颗粒接触方向组构的分布图可知,随着轴向应变增大,颗粒间接触主方向朝竖直方向偏转,表现出明显的各向异性特性。随着轴向应变的增大,颗粒间胶结残余率变小,表明试样逐步破坏。
    Abstract: Marine sandy sediments containing pore-filling type methane hydrate particles can be considered as a class of special granular materials which present apparent discontinuity characteristics. To numerically simulate such materials, the distinct element method (DEM) can be used by modeling methane hydrate particles as groups of spheres cemented together and filled into the pores of soil skeleton. The model parameters for inter-particle bonds within an individual hydrate particle are investigated through parameter inversion against the existing laboratory triaxial compression (TC) test results of methane hydrate blocks under various confining pressures. The results indicate that a loose packing with low inter-particle friction needs to be used for the simulated methane hydrate block. When the inter-particle friction coefficient is equal to or less than 0.0, the friction angle obtained from the unbounded sample is less than that of the experimental tests. The bond stiffness varying in a very small range can adequately capture the elastic behavior of methane hydrate under different confining pressures at the same temperature. Because the interaction between stiffness parameters and bond strength parameters is small, it is assumed that the two types of parameters should be independent. The relationships between micro bond strength parameters and macro parameters (internal friction angle and cohesion) are established by conducting TC tests on choosing different micro bond strength parameters. The methane hydrate shows volume contraction, then dilatancy. And the characteristic dilatancy increases with the decrease of the confining pressure. With the increase of the axial strain, the grain contact direction deflects
  • [1] BIRCHWOOD R, DAI J, SHELANDER D, et al. Developments in gas hydrates[J]. Oilfield Review, 2010, 22(1): 18-33.
    [2] KVENVOLDEN K A, LORENSON T D. The global occurrence of natural gas hydrate[M]// Natural Gas Hydrates: Occurrence, Distribution, and Detection. Washington:American Geophysical Union, 2001.
    [3] BRUGADA J, CHENG Y P, SOGA K, et al. Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution[J]. Granular Matter, 2010, 12(5): 517-525.
    [4] HACISALIHOGLU B, DEMIRBAS A H, HACISALIHOGLU S. Hydrogen from gas hydrate and hydrogen sulfide in the black sea[J]. Energy Education Science and Technology, 2008, 21(1/2): 108.
    [5] Committee on Assessment of the Department of Energy's Methane Hydrate Research and Development Program: Evaluating Methane Hydrate as a Future Energy Resource. Committee on Earth Resources. Board on Earth Sciences and Resources. Division on Earth and Life Studies. National Research Council of the National Academies. Realizing the energy potential of methane hydrate for the United States[R]. Washington: the National Academies Press, 2010.
    [6] NIXON M F, GROZIC J L H. Submarine slope failure due to hydrate dissociation: a preliminary quantification[J]. Canadian Geotechnical Journal, 2007, 44(3): 314-325.
    [7] SOGA K, LEE S L, NG M Y A, et al. Characterisation and engineering properties of methane hydrate soils[J]. Characterisation and Engineering Properties of Natural Soils, 2007, 3: 2591-642.
    [8] WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003.
    [9] UCHIDA S, SOGA K, YAMAMOTO K. Critical state soil constitutive model for methane hydrate soil[J]. Journal of Geophysical Research, 2012, 117(B3): B03209.
    [10] WAITE W F, WINTERS W J, MASON D H. Methane hydrate formation in partially water-saturated Ottawa sand[J]. American Mineralogist, 2004, 89(8/9): 1202-1207.
    [11] HYODO M, NAKATA Y, YOSHIMOTO N, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Japanese Geotechnical Society, 2005, 45(1): 75-85.
    [12] WINTERS W J, PECHER I A, WAITE W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate[J]. American Mineralogist, 2004, 89(8/9): 1221-1227.
    [13] MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial Compressive properties of artificial methane-hydrate-bearing sediment[J]. Journal of Geophysical Research, 2011, 116, B06102.
    [14] 张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质试验研究[J]. 岩土力学, 2010, 31(10): 3069-3074. (ZHANG Xu-hui, WANG Shu-yun, LI Qing-ping, et al. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 2011, 31(10): 3069-3074. (in Chinese))
    [15] 张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 2010, 31(10): 3069-3074. (ZHANG Xu-hui, WANG Shu-yun, LI Qing-ping, et al. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 2010, 31(10): 3069-3074. (in Chinese))
    [16] 颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报. 2012, 34(7): 1234-1240. (YAN Rong-tao, WEI Chang-fu, WEI Hou-zhen, et al. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J], Chinese Journal of Geotechnical Engineering , 2012, 34(7): 1234-1240. (in Chinese))
    [17] CUNDALL P A, STRACK O D L. The discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [18] JIANG M J, SUN Y G, YANG Q J. A simple distinct element modeling of the mechanical behavior of methane hydrate-bearing sediments in deep seabed[J]. Granular Matter, 2013, 15(2): 209-220.
    [19] 蒋明镜, 肖俞, 朱方园. 深海能源土宏观力学性质离散元数值模拟分析[J].岩土工程学报, 2013, 35(1): 157-163. (JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate bearing soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163. (in Chinese))
    [20] SONG Y C, YU F, LI Y H, et al. Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of Natural Gas Chemistry, 2010, 19: 246-50.
    [21] YU F, SONG Y C, LIU W G, et al. Analyses of stress strain behavior and constitutive model of artificial methane hydrate[J]. Journal of Petroleum Science and Engineering, 2011, 77(2): 183-188.
    [22] Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 Dimensions)[M]. Version 3.0. Minneapolis, MN: ICG; 2002.
    [23] POTYONDY D, CUNDALL P. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
    [24] WANG J, YAN H. DEM analysis of energy dissipation in crushable soils[J]. Soils and Foundations, 2012, 52(4): 644-657.
    [25] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597.
    [26] ODA M, IWASHITA K. Mechanics of granular materials[M]. Netherlands: A A Balkema, 1999: 1-80.
    [27] NABESHIMA Y, TAKAI Y, KOMAI T. Compressive strength and density of methane hydrate[C]// Proceedings of the Sixth ISOPE Ocean Mining Symposium. Changsha, 2005.
  • 期刊类型引用(19)

    1. 孙大伟,许鑫洋,郦能惠,章涵,李登华,许兵,黄城友. 高面板坝挤压墙-垫层料接触面的大型单剪试验及力学特性研究. 岩土工程学报. 2025(02): 388-396 . 本站查看
    2. 黄锋,米吉龙,杨永浩,董广法,张班,刘星辰. 分级动荷载下土石混合体滞回曲线形态特征试验研究. 岩土力学. 2024(03): 674-684 . 百度学术
    3. 刘新荣,郭雪岩,周小涵,罗新飏,王浩,李沛瑶,周福川. 库岸危岩剪切带—基岩界面宏细观剪切贯通机制及力学特性研究. 岩石力学与工程学报. 2024(05): 1096-1109 . 百度学术
    4. 赵旭,宗淼,黄景琦,杜修力,赵密,崔臻,张茂础. 隧道围岩-衬砌接触面剪切特性模拟研究. 铁道标准设计. 2024(10): 135-142 . 百度学术
    5. 石广斌,周泽凯. 土石混合体边坡力学特性及稳定性分析方法研究进展. 金属矿山. 2024(10): 202-215 . 百度学术
    6. 杨星宇,陈鹏,郭喜峰,曾勇,张建蓉. 悬索桥重力锚与碎石土接触面原位剪切试验研究. 地下空间与工程学报. 2024(06): 1928-1934+1959 . 百度学术
    7. 李铸卿,温克斌,房盛楠,张鑫,朱才辉. 渭河中砂地层颗粒特性对其物理力学性质影响研究. 自然灾害学报. 2024(06): 67-77 . 百度学术
    8. 朱武俊,王晅,张家生,陈晓斌,成浩,王永倩,李度. 弃渣混合料与混凝土接触面剪切力学特性. 哈尔滨工业大学学报. 2023(02): 98-107 . 百度学术
    9. 林沛元,郭潘峰,郭成超,陈立朝,王复明. 钢板、高聚物、土不同材料界面剪切特性试验研究. 岩土工程学报. 2023(01): 85-93 . 本站查看
    10. 杨忠平,刘浩宇,李进,李绪勇,刘新荣. 土石混合料–基岩接触面剪切力学特性及剪切带变形特征研究. 岩石力学与工程学报. 2023(02): 292-306 . 百度学术
    11. 杨忠平,李进,刘浩宇,张益铭,刘新荣. 土石混合体-基岩界面剪切力学特性块石尺寸效应. 岩土力学. 2023(04): 965-974 . 百度学术
    12. 崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 . 百度学术
    13. 宋颖能. 朱家涧水库大坝土石方及渗控工程实施探讨. 内蒙古煤炭经济. 2022(08): 160-162 . 百度学术
    14. 冯大阔,张建民. 切向应力幅值对土与结构接触面切向变形的影响研究. 岩土工程学报. 2022(11): 1959-1967 . 本站查看
    15. 冯大阔,张建民. 应力幅值比对土-结构接触面非共轴特性影响研究. 岩土力学. 2022(11): 3047-3058 . 百度学术
    16. 张宇,王晅,张家生,丁瑜,闫鹏,李度. 颗粒形状对砂土力学特性的影响研究. 铁道科学与工程学报. 2022(11): 3256-3265 . 百度学术
    17. 杨忠平,李进,蒋源文,胡元鑫,赵亚龙. 含石率对土石混合体–基岩界面剪切力学特性的影响. 岩土工程学报. 2021(08): 1443-1452 . 本站查看
    18. 任三绍,张永双,徐能雄,吴瑞安. 含砾滑带土残余强度与剪切面粗糙度的细观响应机制. 岩土工程学报. 2021(08): 1473-1482 . 本站查看
    19. 刘志伟,丁波涛,梁崇旭. 含水率对花岗岩边坡风化层界面剪切特性的影响. 华南地震. 2021(04): 115-120 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  362
  • HTML全文浏览量:  4
  • PDF下载量:  354
  • 被引次数: 34
出版历程
  • 收稿日期:  2013-07-02
  • 发布日期:  2014-04-21

目录

    /

    返回文章
    返回